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Abstract
Nonlinear charge transport in semiconductor superlattices under strong electric
fields parallel to the growth direction results in rich dynamical behaviour
including the formation of electric field domains, pinning or propagation of
domain walls, self-sustained oscillations of the current and chaos. Theories
of these effects use reduced descriptions of transport in terms of average
charge densities, electric fields, etc. This is simpler when the main transport
mechanism is resonant tunnelling of electrons between adjacent wells followed
by fast scattering between subbands. In this case, we will derive microscopically
appropriate discrete models and boundary conditions. Their analyses reveal
differences between low-field behaviour where domain walls may move
oppositely or parallel to electrons, and high-field behaviour where they can only
follow the electron flow. The dynamics is controlled by the amount of charge
available in the superlattice and doping at the injecting contact. When the charge
inside the wells becomes large, boundaries between electric field domains are
pinned resulting in multistable stationary solutions. Lower charge inside the
wells results in self-sustained oscillations of the current due to recycling and
motion of domain walls, which are formed by charge monopoles (high contact
doping) or dipoles (low contact doping). Besides explaining wave motion and
subsequent current oscillations, we will show how the latter depend on such
controlling parameters as voltage, doping, temperature, and photoexcitation.

1. Introduction

Semiconductor superlattices (SL) are unique nonlinear systems as regards electric charge-
transport properties. To form a SL, several identical periods formed by two layers of compatible
semiconductor materials (e.g., GaAs and AlAs, with similar lattice constants) are grown in
the vertical direction, say [2, 5, 33]. The conduction band of an infinitely long SL looks like
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a one-dimensional crystal formed by a succession of quantum barriers and wells (AlAs and
GaAs in our previous example) [5]. In typical experiments on vertical transport, a finitely long,
doped or undoped SL is placed in the central part of a diode (forming an n+–n–n+ or a n–i–p
structure) and contacts are attached at the two ends thereof. Depending on bias conditions, SL
configuration, doping, temperature, and other control parameters, the current across the SL and
the electric potential inside display a great wealth of patterns and dynamical behaviour, some
of which we shall review in this article. What makes the SLs unique nonlinear systems is that,
in certain regimes, they present features of spatially discrete systems, whereas their behaviour
is more typical of continuous systems in other regimes. These different properties may be
described by discrete or continuous balance equation models. Their derivation from first
principles is not yet fully accomplished [83], and it is rather challenging from the point of view
of statistical mechanics. Studies of fluctuation and noise phenomena in SL under strong electric
fields may be starting only now [13]. These different facets of nonlinear charge transport in
SL will we hope emerge in this review. In it, we will describe the more salient features of
nonlinear dynamics in SL, emphasizing particularly wavefronts and wave propagation, which
constitute the keystone of our present understanding. We will consider here weakly coupled
SL only, in which the barrier width is much larger than the reciprocal of the typical electron
wavenumber inside the barrier. In the opposite limit, nonlinear transport in strongly coupled SL
can be often described by continuum balance equations or semiclassical Boltzmann equations
inside minibands [73, 74]. Mathematically, this is similar to well-known theories for bulk
semiconductors [18]. Of course, miniband approximations should break down at sufficiently
high fields, and a better theoretical understanding is needed there.

As pointed out above, the scope of this review is limited, for we aim at understanding the
basics of those nonlinear phenomena in charge transport in weakly coupled SL that are due to
the formation of electric field domains in the SL. We will approach this by studying a class of
spatially discrete models of vertical charge transport. Our discussion will be focused on wave-
fronts and wave propagation in discrete systems. Unlike in continuum models, wavefronts in
discrete systems may fail to propagate when a control parameter takes values in certain finite
intervals [24–27,42]. This pinning of wavefronts is crucial to understanding their motion and
stationary states in infinite or finite SL. Other aspects of wavefront motion crucial to under-
standing self-sustained oscillations of the current in a voltage-biased SL can be understood
by using continuum limits of discrete models as approximations. Their accuracy should be
contrasted with numerical solution of the discrete models and validated by experiments.

We believe that it is important to attain an understanding of nonlinear dynamics in SL
charge transport that runs deeper than merely simulating model equations and checking
whether theoretical predictions and experimental data agree. This is interesting not only
for the field that we are reviewing, but also for other fields where spatially discrete models
play a role. Among them, let us cite models of dislocations [14, 57], models of crack
propagation [75] and friction in solids [30], sliding of charge-density waves [35], arrays of
superconductor Josephson junctions [86], and propagation of nerve impulses along myelinated
fibres [42]. To our knowledge, this review is the only existing one that tries to explain,
in a mathematically consistent way, the nonlinear charge-transport phenomena observed
experimentally and numerically in weakly coupled SL. Important aspects of superlattice
physics not covered by our review can be found in the following books and review papers:
growth processes and transport measurements in [33], electronic structure in [2, 5, 37, 76],
different theories of charge transport in [72, 83]. The current status of the quantum kinetics
of SL (under homogeneous electric fields and quasistationary conditions) can be found in the
review by Wacker [83], that also contains a section on formation of electric field domains and
a wealth of references.
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The rest of this article is organized as follows. First of all, we will describe in section 2 a
few key experimental results illustrating the interplay between discrete and continuous aspects
of nonlinear vertical transport in SL. Then we will present widely used models thereof and
comment on derivations from first principles in section 3. An understanding of aspects of
nonlinear dynamics will be obtained by solving these models in different parameter regimes.
Our discussion will be focused on wavefronts and wave propagation in discrete systems,
which is the key to understanding the observed nonlinear dynamical phenomena. Unlike
in continuum models, wavefronts in discrete systems may fail to propagate when a control
parameter takes values in certain finite intervals [24–27, 42]. This pinning of wavefronts is
crucial to understanding their motion and stationary states in infinite or finite SL, as we will
explain in section 4. In sections 5 and 6, we will show how waves can be used to explain different
phenomena observed in dc voltage-biased SL. In section 5, we explain the relocation of domain
walls after a sudden voltage change. In section 6, we study self-sustained oscillations of the
current through a voltage-biased SL and the roles of doping, temperature, photoexcitation, etc.
In the final section, we will comment on several interesting open problems. Appendix A is
devoted to deriving analytical expressions for the transport coefficients and contact currents
(not found elsewhere at the time of writing), and appendix B contains considerations on the
continuum limit of a discrete model with a more general constitutive relation for the tunnelling
current density than the discrete drift-diffusion (DDD) model studied in this review.

2. Key experimental results

The current–voltage (I–V ) characteristic curve of a weakly coupled SL presents the distinctive
multibranch aspect shown in figure 1(a) when there is enough electric charge inside the SL.
This charge may be produced by doping or irradiating the SL with appropriate laser intensity
(thereby generating electron–hole pairs). The multiplicity of branches in the I–V curve is
due to the formation of electric field domains, as explained below. When the electron density
inside the SL is sufficiently low, the electric field is almost spatially uniform. The I–V
curve is smooth and it has a number of peaks as depicted in the dotted photocurrent curve
of figure 1(b) corresponding to an undoped reference sample with the same configuration as
the doped sample. (The photocurrent is proportional to the number of electrons that arrive
at the collector per unit time after a pulse excitation and can be measured by varying the
current through a resistor in series with the SL [70].) These peaks of the current occur at
field values at which the subbands of two adjacent wells are aligned. Take for instance the
second peak in figure 1(b). If the applied field is (EC2 − EC1)/(el) (e is minus the electron
charge and l is the SL period), electrons in the lowest subband of a given well, C1, with
energy EC1 in the absence of bias, tunnel resonantly across the barrier to theC2 subband of the
adjacent well (with energy EC1 in the absence of bias). They then undergo scattering processes
(with LO phonons, interface roughness, . . . ) and fall to the C1 subband of that well. This
process is called sequential tunnelling; see figure 2(a). Outside resonances, charge transport
is less efficient, resulting in lower values of the current. Whatever the value of the charge in
the SL, the bias regions between peaks of the current are called plateaus. The first peak is
approximately located at a field equal to the scattering energy divided by el, while the second
peak is approximately given by (EC2 − EC1)/(el), and so on.

Provided that the charge inside the SL is large enough, a spatially uniform field
configuration is unstable and a stationary field configuration having two electric field domains
appears. A rough description of these domains is as follows. Assume that the bias is on the
first plateau of the I–V curve and that both current and voltage are independent of time. The
electron drift velocity is proportional to the photocurrent of the undoped reference sample
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Figure 1. Current–voltage characteristic curves of GaAs/AlAs SL. (a) The multibranched
characteristic for the first plateau of a negatively biased sample with w = 9 nm, d = 4 nm,
doping Nw

D = 1.5 × 1011 cm−2. The smooth curve for lower current corresponds to an undoped
SL with the same configuration (reference sample) (reprinted from [32]). (b) The characteristic
with flat plateaus for the same sample, positively biased over a larger voltage range. The dotted
characteristic curve underneath is the peak photocurrent versus applied voltage obtained by time-
of-flight experiments on the undoped reference sample (reprinted from [40]).
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Figure 2. (a) The conduction band profile of a superlattice with three subbands in an applied
electric field. (b) Drift velocity versus field characteristics of this superlattice consisting of the
nonresonant background, the low-field maximum (C1 → C1), and the first two resonant tunnelling
maxima. The dotted curve indicates a possible shape of the v(F ) curve in the case of a � → X
resonance located between the C1 → C2 and C1 → C3 resonances. The dashed line is explained
in the text (reprinted from [40]).

in figure 1(b), which is schematically indicated in figure 2(b). Part of the SL (the first m SL
periods) is at an almost zero fieldF− and resonant tunnelling betweenC1 subbands of adjacent
wells dominates. The rest of the SL (N−m SL periods, whereN is the total number of periods)
is at the field F+ having the same velocity (proportional to the photocurrent) as the C1–C1
resonant field F−; see figure 2(b). F+ is slightly smaller than that corresponding to the C1–C2
resonant tunnelling process described above; F = (EC2 − EC1)/(el). The extent of the lower-
field domain is given by the condition that mF− + (N − m)F+ ≈ (N − m)(EC2 − EC1)/(el),
equal to the voltage across the SL. As shown in figure 3, we may have coexistence of different
domain branches for a given value of the voltage. The field configuration at each branch differs
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Figure 3. Details of the multistability of the stationary field configurations in figure 1(a) obtained
by successive adiabatic up-sweeping and down-sweeping of the I–V characteristic curve. (a)–(c)
correspond to different up-sweeping and down-sweeping processes designed to reveal different
stable branches (reprinted from [39]).

in the extent of low- and high-field domains. The domain wall separating low- and high-field
domains is at the last SL period for the first branch after the C1–C1 resonance in figure 1(a).
Thenm = N−1. For the following branch,m = N−2, and so on. The extent of the high-field
domain is smaller for a branch having higher current value than for another one at the same
voltage. Adiabatic up-sweeping and down-sweeping of the I–V curve shows hysteresis cycles
and experimentally demonstrates multistability of different branches as shown in figure 3. The
coexistence of two electric field domains inside the SL is confirmed by photoluminescence
measurements [31].

At intermediate values of the charge inside the SL, the I–V curve is flat between peaks
as depicted by the curve at larger current of figure 1(b). When time-resolved measurements
of the current are carried out in these flat regions, self-sustained oscillations are observed,
as in figure 4. In certain cases, experimental evidence shows that self-oscillations appear as
recycling and motion of domain walls separating two electric field domains. This can be verified
experimentally by indirect means because the current–time trace is directly measurable but
the electric potential or field inside the SL is not. Typical indirect measurements are the time-
resolved photoluminescence spectra. The photoluminescence intensity (shown as a greyscale
in figure 4(c) such that darker regions correspond to larger intensity) is recorded for each time
as a function of the wavelength or energy of light emitted due to electron–hole recombination.
Let us assume that there are two electric field domains in the SL, one at zero field, so that
electrons tunnel from the C1 subband of one well to the C1 subband of the next well, and the
other at a field corresponding to C1–C2 resonant tunnelling. Recombination light emitted by
wells in the high-field domain has less energy than light emitted at zero field due to the quantum
confined Stark effect [53]. If most of the SL is at zero field, the photoluminescence spectrum
will present a peak at higher energy than that corresponding to a SL most of which is at theC1–
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Figure 4. Time-resolved current oscillations for a GaAs/AlAs SL with w = 9 nm, d = 4 nm,
Nw
D = 1011 cm−2. (a) The time-resolved signal showing current self-oscillations for a bias on the

first plateau (2.77 V) at 6 K. Notice the high-frequency spikes superimposed on the self-oscillations.
(b) The same, but for a voltage on the second plateau (7.3 V at 5 K): current spikes are much harder
to observe (reprinted from [38]). (c) Comparison of time-resolved current oscillations and the
photoluminescence spectrum for a bias on the second plateau (reprinted from [34]).

C2 resonant field. Thus the strength of the photoluminescence peaks gives an idea of the spatial
extent of the corresponding electric field domains. Figure 4(c) shows that photoluminescence
peaks corresponding to two domains (the values of the field at these two domains correspond
to the C1–C2 and the C1–C3 resonant fields) alternate in strength, in phase with current self-
oscillations. This suggests that the extent of these domains is periodically changing with time,
as indicated by numerical simulations of the models presented later. An interesting feature of
the self-oscillations in figure 4(a) is the presence of current spikes superimposed on the signal.
Experimental and numerical evidence shows that each spike occurs as the domain wall moves
from one SL well to the next. Then the number of spikes during each self-oscillation period
indicates the number of wells traversed by the domain wall during its motion. In figure 4(a),
the number of spikes in one period of the current–time trace is significantly lower (17) than
the number of SL periods (40). This suggests that recycling and motion of domain walls is
confined to part of the SL [40]. Theory and numerical simulations of discrete models [67,83]
(see below) show that current self-oscillations may be due to recycling and motion of two
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different type of wave: accumulation wavefronts (which are moving charge monopoles) and
pulses of the electric field (which are moving charge dipoles). The current–time traces and
the corresponding electric field profiles of these two oscillatory states are different, and the
main difference is as follows. Dipoles recycle in the injecting region and move until they
arrive at the receiving region therefore, whereas monopoles first become appreciable well
inside the SL and then move until they arrive at the receiving contact. Correspondingly, the
current–time trace of dipole-type self-oscillations should exhibit a number of spikes close
to the number of SL periods (40 for figure 4) whereas the current–time trace of monopole-
type self-oscillations should exhibit fewer current spikes [67]. Together with the evidence
provided by photoluminescence measurements, the current–time traces in figure 4(a) support
the conclusion that self-sustained current oscillations for that SL at the bias conditions indicated
are due to recycling and motion of monopole wavefronts.

3. Models

In weakly coupled SL, the main transport mechanism is sequential resonant tunnelling.
Nonlinear phenomena seen in experiments can be described by discrete balance equations.
Early models were motivated by static domain formation, and we may cite Likharev et al [47],
Laikhtman [44] and Laikhtman and Miller [45] among the first authors who recognized the
importance of using discrete equations. In this paper, I will describe a model of SL transport
introduced in 1994 by our group [8], aspects of which have been steadily improved on in
collaboration with other groups, particularly Platero’s and Schöll’s. Models of the same type
(involving two electron populations corresponding to the lowest two subbands instead of just
one electron density) were put forward by Schöll and his group, also starting in 1994 [63,83].

3.1. Assumptions and the discrete drift-diffusion model

For a weakly coupled doped SL, there are certain important timescales that are well separated.
The scattering time is the time that an electron originally in an excited subband takes to lose
energy and fall to the first subband. The escape time or tunnelling time is the average time that
an electron needs to escape from one well to the adjacent one. Finally, the dielectric relaxation
time is the longer timescale over which the local electric field at a SL period evolves. The
latter yields the order of magnitude of the period of self-sustained oscillations, and it is of the
order of the SL length divided by an average electron velocity. In a weakly coupled SL, the
scattering time is much smaller than the tunnelling time, and the latter is much smaller than the
macroscopic dielectric relaxation time. Then the dominant mechanism of vertical transport
is sequential tunnelling; only the first subband of each well is appreciably occupied, and the
tunnelling current is quasistationary. The latter statement means that we can calculate the well-
to-well tunnelling current density across a barrier assuming a constant value of the applied
electric field and a constant electron density at the wells adjacent to the barrier. The resulting
expression is then considered as the constitutive relation between the tunnelling current and
the local electric field(s) and electron densities at the wells adjacent to the barrier.

We count the barrier separating the injecting contact from the first well of the SL as the
zeroth barrier. Then the ith SL period starts on the right of the (i−1)th barrier and ends on the
right of the ith barrier. Barriers and wells have widths d and w, respectively, so l = d + w is
the SL period. With this convention, we will adopt, as dependent barriers of our model, minus
the electric field averaged over the ith period, Fi , and the two-dimensional electron density at
the ith well (concentrated in a plane normal to the growth direction, located at the end of the
ith well), ni . These variables obey the Poisson and charge continuity equations:
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Fi − Fi−1 = e

ε
(ni −Nw

D) (3.1)

dni
dt

= Ji−1→i − Ji→i+1. (3.2)

HereNw
D , ε, and eJi→i+1 are the 2D doping density at the ith well, the average permittivity of the

SL, and the tunnelling current density across the ith barrier, respectively. We can differentiate
equation (3.1) with respect to time and eliminate ni by using equation (3.2). The result can be
written as a form of Ampère’s law for the balance of current:

ε

e

dFi
dt

+ Ji→i+1 = J (t). (3.3)

Here eJ (t) is the total current density through the SL, equal for all SL periods, and ε dFi/dt
is the displacement current at the ith SL period.

The tunnelling current density eJi→i+1 is related to electric fields and electron densities by
a constitutive relation, which could be fitted to available experimental data or, more desirably,
derived from first principles. At present, there are two such derivations, none of which is
completely satisfactory. Both derivations assume the separation between relevant timescales
explained above and calculate a quasistationary tunnelling current density. The first derivation
is based upon calculating the tunnelling current by the transfer Hamiltonian method (THM).
It is assumed that the barriers are sufficiently thick that different wells are weakly coupled,
and that the voltage drops at barriers and wells are uniform in space. This method leads to a
more detailed discrete model [1] which resolves the fast timescale corresponding to current
spikes even at second and higher plateaus [67]. It yields the tunnelling current and boundary
conditions in a natural way. The second derivation uses the method of nonequilibrium Green
functions (in a Wannier basis) for an infinite SL which is subject to a constant electric field
and is in a stationary spatially homogeneous state [82,83]. In principle, an approach from this
point of view could lead to derivation of more general discrete models of hydrodynamic type,
or to consideration of the transition between weakly and strongly coupled SL, although these
desirable goals have not been achieved so far.

If we assume that the potential drops at barriers and wells are proportional to an average
field Fi (at the ith SL period), either THM or stationary Green function calculations yield
expressions for the tunnelling current of the form Ji→i+1 = J (ni, ni+1, Fi; T ). Here T
is the lattice temperature, which is supposed to be the same as the electron temperature.
This ignores hot-carrier effects and it is not correct in general. Somewhat more general
models with an average electron temperature Ti at the ith SL period have been proposed,
including a phenomenological equation for the temperature [77]. A general derivation of the
balance equations (including the equation for the temperature) would clarify these issues. For
sufficiently high temperatures (see appendix A), we can adopt the following drift-diffusion
form for the constitutive relation [12]:

Ji→i+1 = niv(Fi)

l
−D(Fi)

ni+1 − ni

l2
, (3.4)

where the drift velocity is an odd function of the field, v(−F) = −v(F ), and the diffusion
coefficient satisfies the relation

D(−F) = v(F )l +D(F). (3.5)

These coefficients can be calculated from the formulae

v(F ) = lJ (Nw
D,N

w
D, F ; T )

Nw
D

,

D(F) = − l
2J (0, Nw

D, F ; T )
Nw
D

.

(3.6)
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Figure 5. (a) The calculated electron drift velocity v(F ) for the 9/4 SL at 0 K. Inset: comparison
of the drift velocity v(F ) (continuous curve) with the forward v(f )(F ) = v(F ) +D(F)/l (dashed
curve) and backward v(b)(F ) = D(F)/l (dot–dashed curve) velocities. (b) The same, but for
the 13.3/2.7 SL. Notice that the backward velocity, or equivalently the diffusivity, decreases with
electric field much more rapidly for this SL (reprinted from [12]).

Typical forms are shown in figure 5. Analytical formulae for the tunnelling current and these
coefficients can be explicitly derived in the limit of narrow scattering widths; see appendix A.
The Ampère law corresponding to the current in equation (3.4) is

ε

e

dFi
dt

+
niv(Fi)

l
−D(Fi)

ni+1 − ni

l2
= J (t). (3.7)

Equations (3.1) and (3.7) form the discrete DDD, which we will study in the rest of this article.
Notice that for high fields (in practice for all plateaus except the first one), D = 0, and we
have a simpler discrete drift model [8, 9] with Ji→i+1 = niv(Fi)/ l.

The boundary conditions for the contact regions at the ends of the SL should be
equation (3.3) at i = 0 andN , with appropriate constitutive relations for the tunnelling current
across the 0th and N th barriers. A derivation from the THM yields the following expressions:

J0→1 = j (f )e (F0)− n1

l
w(b)(F0), (3.8)

JN→N+1 = nN

l
w(f )(FN), (3.9)

where j (f )e ,w(b), andw(f ) are functions of the local field. Coefficient functions corresponding
to the 9/4 sample of [40] are represented in figure 6. They have shapes that are typical for
similar SL. Let us emphasize here that many other boundary conditions have been used in the
literature, mostly introduced in a phenomenological manner. Among them, let us quote, using
Ohm’s law for the injecting contact, j (f )e = σF0,w(b) = 0, and a linear velocity function at the
collector, w(f ) = σ lFN/N

w
D ; see [3], and section 5 below. Selecting the contact conductivity

σe appropriately, it is then possible to obtain both monopole wavefronts and charge dipole
domains (pulses of the electric field). Calculations with the discrete drift model typically
use n1 = (1 + c)Nw

D , which phenomenologically accounts for an excess of electrons in the
first well of the SL coming from the emitter region. This boundary condition results in self-
sustained current oscillations due to monopole recycling if c > 0 [10, 15, 34, 40]. Notice
that the discrete drift model has zero diffusivity, so we only need one boundary condition, for
F0 = F1 − e(n1 −Nw

D)/ε.
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Figure 6. Functions of the electric field appearing in the boundary conditions for the 9/4 SL with a
contact dopingND = 2×1018 cm−3. (a) ej (f )e (F ) and (b)w(b)(F ) for the emitter, and (c)w(f )(F )
for the collector (reprinted from [12]).

Lastly, we need a bias condition to completely specify our DDD model. Most experiments
are carried out under voltage bias conditions, which means that V (t) in

1

N

N∑
i=1

Fi = V (t)

Nl
(3.10)

is a known function.
To analyse the discrete DDD, it is convenient to render all equations dimensionless. Let

v(F ) reach its first positive maximum at (FM, vM). We adopt FM , Nw
D , vM , vMl, eNw

DvM/l,
and εFMl/(eNw

DvM) as the units of Fi , ni , v(F ), D(F), eJ , and t , respectively. For the
first plateau of the 9/4 SL of [40], we find FM = 6.92 kV cm−1, Nw

D = 1.5 × 1011 cm−2,
vM = 156 cm s−1, vMl = 2.03 × 10−4 cm2 s−1, and eNw

DvM/l = 2.88 A cm−2. For a circular
sample with a diameter of 120 µm, the units of current and time are 0.326 mA and 2.76 ns,
respectively. Then equations (3.1), (3.7), to (3.10) become

dEi
dt

+ v(Ei)ni −D(Ei)(ni+1 − ni) = J, (3.11)

Ei − Ei−1 = ν(ni − 1), (3.12)

1

N

N∑
i=1

Ei = φ, (3.13)

dE0

dt
+ Je(E0)− we(E0)n1 = J, (3.14)

dEN
dt

+ wc(EN)nN = J. (3.15)

Here we have used the same symbols for dimensional and dimensionless quantities except for
the electric field (F dimensional, E dimensionless). The parameters ν = eNw

D/(εFM) and
φ = V/(FMNl) are dimensionless doping and average electric field (bias), respectively. For
the 9/4 SL, ν ≈ 3. We recall that i = 1, . . . , N − 1 in (3.11) and i = 1, . . . , N in (3.12).
In equations (3.14) and (3.15), Je(E0) = j

(f )
e (FME0)l/(N

w
DvM), we(E0) = w(b)(FME0)/vM ,

wc(EN) = w(f )(FMEN)/vM . As a handy reference, we give below a table with the definitions
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Table 1. Definitions of the units that we have used to nondimensionalize the model equations and
their numerical values for the first plateau of the 9/4 SL.

F n v D eJ t

FM Nw
D vM vMl

eNw
DvM

l

εFMl

eNw
DvM

6.92 kV cm−1 1.5 × 1011 cm−2 156 cm s−1 2.03 × 10−4 cm2 s−1 2.88 A cm−2 2.76 ns

of the units that we have used to nondimensionalize the model equations and their numerical
values for the first plateau of the 9/4 SL (table 1). Given a dimensionless magnitude we
should multiply it by its corresponding unit in the table to obtain its value in physical units. In
addition to the numerical values included in the table (corresponding to the first plateau of the
9/4 SL of [40]), we can calculate FM , vM , and so on for any SL or plateau in which we may
be interested. Then we can use the corresponding numerical values to compute the units listed
in the table, and translate the dimensionless values of the magnitudes given by the theory into
physical dimensional units. Using dimensionless units has the following advantages:

(i) redundant parameters in the equations are eliminated, and
(ii) different terms in the equations can be properly compared. Thus the task of neglecting

small terms can be appropriately carried out.

4. Stationary states and wavefronts

4.1. Wavefronts on an infinite superlattice

Here we shall consider an infinite SL under constant current bias J described by
equations (3.11) and (3.12), or equivalently,

dEi
dt

+ v(Ei)
Ei − Ei−1

ν
= D(Ei)

Ei+1 + Ei−1 − 2Ei
ν

+ J − v(Ei). (4.1)

Clearly, there are two stable spatially homogeneous stationary solutions, namely E(1)(J )
and E(3)(J ), where v(E(k)) = J , E(1)(J ) < E(2)(J ) < E(3)(J ). We are interested in
nonuniform wavefront states of the DDD model which satisfy Ei → E(1)(J ) as i → −∞
and Ei → E(3)(J ) as i → ∞. These states correspond to electron accumulation layers:
ni − 1 = (Ei − Ei−1)/ν > 0. It is also possible to have electron depletion layers such that
Ei → E(3)(J ) as i → −∞ and Ei → E(1)(J ) as i → ∞, with ni − 1 < 0. Electron
accumulation wavefront states are either stationary or time dependent. In the second case,
they are wavefronts moving with constant velocity c = c(J, ν), such that Ei(t) = E(i − ct),
i = 0,±1, . . . , E(τ), is a smooth profile which solves the following nonlinear eigenvalue
problem for c (measured in wells traversed per unit time) and E(τ):

c
dE

dτ
= v(E)− J + v(E)

E − E(τ − 1)

ν
−D(E)

E(τ + 1) + E(τ − 1)− 2E

ν
, (4.2)

E(−∞) = E(1)(J ), E(∞) = E(3)(J ). (4.3)

Electron depletion wavefronts obey the same equation with the obvious change in boundary
conditions. No rigorous study of pinning of depletion wavefronts exists, although comparison
methods [24] should work with them too. So far, numerical simulations have always shown
depletion wavefronts moving with positive velocity. As we will see later, wavefronts are
the key to understanding more complex phenomena related to the dynamics of electric field
domains. From now to the end of this section, we shall consider electron accumulation
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wavefronts only. By using a comparison principle, the existence of stationary fronts has been
rigorously proved [24]. Outside the interval of current values in which there are stationary
fronts, we can only prove that there are fronts moving to the right or the left [24]. Moving and
stationary fronts cannot exist simultaneously at the same value of the current [25].

4.1.1. Pinning. Numerical simulations of (4.1) show that, after a short transient, a variety of
initial conditions such that Ei → E(1)(J ) as i → −∞ and Ei → E(3)(J ) as i → ∞ evolved
towards either a stationary or moving monopole. For systematic numerical studies, we have
therefore adopted an initial steplike profile, with Ei = E(1)(J ) for i < 0, Ei = E(3)(J ) for
i > 0, and E0 = E(2)(J ). The boundary data are taken to be E−N = E(1)(J ), EN = E(3)(J )

with N large. Figure 7 is a phase diagram showing the regions in the plane (J, ν) where
different wavefronts are stable. There are two important values of ν, ν1 < ν2. The critical
value ν1 defines the minimum doping value needed for a stationary monopole to exist, whereas
ν2 is the minimum doping needed for a monopole to move upstream with c < 0:

• For 0 < ν < ν1 and each fixed J in the interval (vm, 1), only travelling monopole
fronts moving downstream (to the right) are observed. This implies that there will
be no experimental observation of static current branches if the 2D doping obeys
Nw
D < ν1εFM/e. For ν > ν1, stationary monopoles are found (and static current branches

in the SL I–V characteristic can be experimentally observed); see figure 7. The upper
bounds for ν1 are [24]

ν1b(J ) = vm
Em − E(1)(J )

1 − vm
, (4.4)

νc = min ν1b(J ) = vm
Em − 1

1 − vm
. (4.5)

The smallest possible bound ν1b(J ) is νc = 0.198, for our numerical example. We have
found that the smallest value of ν1(J ) is 0.16.

• For ν1 < ν < ν2, travelling fronts moving downstream exist only if vm < J < J1(ν),
where J1(ν) < 1 is a critical value of the current; see figure 7. If J1(ν) < J < 1, the
stable solutions are steady fronts (stationary monopoles). We have found that ν2 = 0.33.

• New solutions are observed for ν > ν2. As before, there are travelling fronts moving
downstream if vm < J < J1(ν), and stationary monopoles if J1(ν) < J < J2(ν),
J2(ν) < 1 is a new critical current; see figure 7. For J2(ν) < J < 1, the stable solutions
of (4.1) are monopoles travelling upstream (to the left). As ν increases, J1(ν) and J2(ν)

approach vm and 1, respectively. Thus stationary solutions are found for most values of
J if ν is large enough.

Figure 7 depicts J1(ν) and J2(ν) as functions of ν. The dashed lines are analytical
expressions for J1(ν) and J2(ν) that are calculated by using a comparison principle and the
numerical forms for v(E) and D(E), while the solid curves result from a full simulation of
equation (4.1); see [24]. Notice that J1 decreases from J1 = 1 to vm as ν increases from ν1.
Similarly, J2 decreases from J2 = 1 to a minimum value J2 ≈ 0.53 and then increases back
to J2 = 1 as ν increases. Thus we see that the pinning interval (J1, J2) at which fronts are
stationary is narrower for doping such that J2(ν) reaches its minimum. For larger ν, the interval
of J for which stationary solutions exist becomes wider again, getting closer to spanning the
whole interval (vm, 1) as ν → ∞. For very large ν, the velocities of downstream and upstream
moving monopoles become extremely small in absolute value.

Monopole velocity as a function of current has been depicted in figure 8 for the first plateau
of the 9/4 SL in [40]. Notice that, for the DDD model, the interval of current values at which



Theory of nonlinear charge transport, wave propagation, and self-oscillations in superlattices R353

1

vmin

νν1 2

fronts to
the
right

fronts to the
left

steady fronts

J

ln ν ln  ln

J1(ν)

2b

1b

2
ν)

ν

ν J(  (J) +

   

 (J) 

 

0 1 2 3 8 97654

Figure 7. Critical currents J1 and J2 as functions of the dimensionless doping ν. Monopoles move
downstream for vm < J < J1(ν), are stationary for J1(ν) < J < J2(ν), and move upstream
for J2(ν) < J < 1. Dashed curves in this figure represent theoretical bounds ν1b(J ) and ν+

2b(J )

derived in [24] (reprinted from [24]).

Figure 8. Velocity of a monopole wavefront as a function of the current for the first plateau of
the 9/4 SL in [40]. Results for the discrete DDD with ν = 3 (thick curve) have been compared
to those obtained by using the exact tunnelling current eJi→i+1 = eJ (ni , ni+1, Fi ; T ) (thin curve)
instead of the approximation given by equation (3.4). Notice that both the DDD model and the
model with the more general tunnelling current exhibit a pinning interval for the current at which
c = 0, and current intervals for which the monopoles move upstream or downstream in the electron
flux (reprinted from [24]).

wavefronts are stationary is shifted to lower values of the current with respect to the more
general tunnelling current eJ (ni, ni+1, Fi; T ) given by the THM or Green function methods;
see [24].

There are two limits in which analytical understanding of wavefront motion has been
achieved: the continuum limit ν → 0 (with finite values of νN ); and the strongly discrete
limit of sufficiently large ν. The transition from moving to stationary wavefronts is best
understood in the strongly discrete limit [26], while we have a theory of wavefront recycling
in the continuum limit.
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Figure 9. Sharpening of wavefront profiles as the dimensionless current J approaches its critical
values for ν = 3. (a) J ≈ J2, (b) J > J2, (c) J ≈ J1, (d) J < J1 (reprinted from [27]).

4.1.2. Pinning of wavefronts with a single active well. At the critical currents, J1(ν) and
J2(ν), wavefronts moving downstream (to the right, following the electron flow, c > 0) for
smaller J or upstream (to the left, against the electron flow, c < 0) for larger J fail to propagate.
What happens is that the wavefront field profile E(τ) becomes sharper as J approaches the
critical currents; see figure 9. Exactly at Jk , k = 1, 2, gaps open up in the wavefront profile
which therefore loses continuity. The resulting field profile is a stationary frontEi = Ei(J, ν):
the wavefront is pinned for J1 < J < J2. The depinning transition (from stationary fronts to
moving wavefronts) is technically speaking a global saddle-node bifurcation. We shall study
it first in the simplest case of large dimensionless doping ν, and then indicate what happens in
the general case.

For sufficiently large doping and J close to a critical current (either J1 or J2), the moving
front is led by the behaviour of a single well, which we will call the active well. If we examine
the shape of a stationary front near the critical current, we observe that all wells are close
either to E(1)(J ) or E(3)(J ) except for one well which drifts slowly and eventually jumps:
the active well. Let us call E0 the electric field at the active well. Since all wells in the front
perform the same motion, we can reconstruct the profile E(i − ct) from the time evolution of
E0(t) = E(−ct). Before the active well jumps, Ei ≈ E(1)(J ) for i < 0 and Ei ≈ E(3)(J ) for
i > 0. Thus equation (3.10) becomes

dE0

dt
≈ J − v(E0)− v(E0)

E0 − E(1)

ν
+D(E0)

E(1) + E(3) − 2E0

ν
. (4.6)

This equation has three stationary solutions for J1 < J < J2, two stable and one unstable, and
only one stable stationary solution otherwise. At the critical currents, two of these solutions
coalesce forming a saddle node. At low values of the current, the two coalescing solutions
are a double zero (multiplicity two) of the right-hand side of equation (4.6) corresponding to
a local maximum thereof. For high currents, the two coalescing solutions are a double zero of
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the right-hand side of equation (4.6) corresponding to a local minimum thereof. The critical
currents are such that the expansion of the right-hand side of (4.6) about the two coalescing
stationary solutions,

J − v(E0)− v(E0)
E0 − E(1)

ν
+D(E0)

E(1) + E(3) − 2E0

ν
= 0, (4.7)

has zero linear term,

D′
0(E

(1) + E(3) − 2E0)− 2D0 − v′
0(E0 − E(1))− v0 − νv′

0 = 0. (4.8)

HereD′
0 meansD′(E0) = (dD/dE)(E0), etc. Equations (4.7) and (4.8) yield approximations

toE0 and the critical current Jc (which is either J1 or J2). The results show excellent agreement
with those of numerical solutions of the model for ν > 2. Our approximation performs less
well for smaller ν, which indicates that more active wells are needed to improve it.

Let us now construct the profile of the travelling wavefronts after depinning, for J slightly
below J1 or slightly above J2. We shall use the method of matched asymptotic expansions [6].
The idea is to describe the jump of an active well from E(1)(J ) to E(3)(J ) if J > J2 (or from
E(3)(J ) to E(1)(J ) if J < J1) by means of two separate stages. During the first stage, E0(t)

stays very close to its stationary value at the critical current,E0(Jc), for a very long time. After
reaching a certain blow-up time, the active well jumps to E(3)(J ) (or it falls to E(1)(J )) on a
faster timescale, as suggested by the numerical results depicted in figures 9(a) and (c). The
process is then repeated until the active well reaches either E(3)(J ) or E(1)(J ). Let us start
with the slow stage. Up to terms of order |J − Jc|, equation (4.6) becomes

dϕ

dt
≈ α(J − Jc) + βϕ2, (4.9)

for E0(t) = E0(Jc) + ϕ(t), as J → Jc. E0(Jc) is the stationary solution of (4.6) at J = Jc.
The coefficients α and β are given by

α = 1 +
v0 +D0

νv′
1

+
D0

νv′
3

, (4.10)

2νβ = D′′
0 (E

(1) + E(3) − 2E0)− 4D′
0 − 2v′

0 + v′′
0 (E

(1) − E0 − 2ν). (4.11)

β is negative if Jc = J1 and positive if Jc = J2. Equation (4.9) yields the outer approximation
to the depinning transition [6], and it has the solution

ϕ(t) ∼ (−1)k
√
α(J − Jk)

β
tan

(√
αβ(J − Jk)(t − t0)

)
(4.12)

(k = 1, 2), for J such that sgn(J − Jk) = sgn β. The amplitude (4.12) is very small most of
the time, but it blows up when the argument of the tangent function approaches ±π/2. Thus
the outer approximation holds over a time interval (t− t0) ∼ π/

√
αβ(J − Jk). The reciprocal

of this time interval yields an approximation for the wavefront velocity:

|c(J, ν)| ∼
√
αβ(J − Jk)

π
. (4.13)

In figures 10 and 11, we compare this approximation with the numerically computed velocity
for ν = 3 and 20, respectively. The agreement is excellent. Notice that for the smaller value,
ν = 3, we need to improve our approximations considering that there are several active wells,
E−L(t), . . . , E0(t), . . . , EM(t), that differ from eitherE(1)(J ) orE(3)(J ) during the wavefront
motion: E−i = E(1)(J ) if i > L and Ei = E(3)(J ) if i > M . The corresponding theory
is similar to the one we have described except that we consider a system of finitely many
differential equations (for the active wells) instead of the single equation (4.6) [27].
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Figure 10. Wavefront velocity as a function of current density for ν = 3. We have compared the
numerically measured velocity to the results from our theory with one or four active wells (reprinted
from [27]).
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Figure 11. Wavefront velocity as a function of current density for ν = 20. We have compared
the numerically measured velocity to the results from our theory with one active well (reprinted
from [27]).

When the solution begins to blow up, the outer solution (4.12) is no longer a good
approximation, for E0(t) departs from the stationary value E0(Jc). We must go back to (4.6)
and obtain an inner approximation to this equation [6]. As J is close to Jc and E0(t)−E0(Jc)

is of order 1, we solve (4.6) numerically at J = Jc with the matching condition that
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Figure 12. Wavefront profiles near J = J2 for ν = 20. The results of matched asymptotic
expansions with one active well and the numerical solution of the model are compared (reprinted
from [27]).

E0(t)−E0(Jc) ∼ (−1)k2/[π
√
β/[α(J − Jc)] − 2|β|(t − t0)], as (t − t0) → −∞. This inner

solution describes the jump ofE0 to values close toE(1) if Jc = J1, or to values close toE(3) if
Jc = J2. During this jump, the motion ofE0 forces the other points to move. Thus, for Jc = J1,
E1(t) can be calculated by using the inner solution in (4.1) forE0, with J = Jc andE2 ≈ E(3).
Similarly, for Jc = J2, E−1(t) can be calculated by using the inner solution in (4.1) for E0,
with J = Jc and E−2 ≈ E(1). A composite expansion [6, 7] constructed with these inner and
outer solutions is compared to the numerical solution of the model in figure 12. Notice that
we can reconstruct the travelling wave profiles E(i − ct) from the identity E0(t) = E(−ct)
by rescaling the horizontal axis in figure 12.

4.1.3. Continuum limit. The continuum limit of the DDD model is useful for understanding
self-sustained oscillations of the current and wavefront motion [9]. It consists of ν → 0,
i → ∞, with νi = x ∈ [0, Nν], Nν � 1. In this limit, equations (3.11) and (3.12) yield

∂E

∂t
+ v(E)

∂E

∂x
= J − v(E), (4.14)

up to terms of order ν. Equation (4.14) corresponds to the hyperbolic limit of the well-known
Kroemer model of the Gunn effect [36]. Notice that a wavefront joining E(1)(J ) to E(3)(J )
with ∂E/∂x > 0 (or with ∂E/∂x < 0) and zero velocity cannot exist because J − v(E)

in equation (4.14) changes sign at E = E(2)(J ). Thus wavefronts cannot be pinned in the
continuum limit. As we show now, wavefronts can be constructed by using shock waves (i.e.,
moving discontinuous electric field profiles). With constant J , shock waves are solutions of
these equations and their speed can be calculated explicitly [43, 56]. Let V (E+, E−) denote
the speed of a shock wave such that E becomes E− (or E+) to the left (or right) of the shock
wave. Inside the shock wave, we should use the discrete model. The wavefront velocity
should be rescaled such that V = cν is the correct velocity for the (rescaled) continuum
profile E(x − V t) = E(ν(i − ct)) = Ei(t). Let E′(ξ) = dE/dξ and Ėi(t) = dEi/dt with
ξ = x − V t . Then Ei − Ei−1 = E(ξ) − E(ξ − ν) = νE′(ξ − ν0) with 0 < ν0 < ν by
the mean-value theorem. But we have −VE′(ξ − ν0) = Ėi(t + ν0/V ) = Ėi(t) + O(ν), and,
therefore, dEi/dt ∼ −V (Ei − Ei−1)/ν. Then
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E+ − E− =
∑

(Ei − Ei−1) = ν
∑

(ni − 1)

∼ V
∑ Ei − Ei−1

v(Ei) +D(Ei)
+

∑ D(Ei)

v(Ei) +D(Ei)
νni+1

+ ν
∑(

J

v(Ei) +D(Ei)
− 1

)

= V
∑ Ei − Ei−1

v(Ei) +D(Ei)

+
∑ D(Ei)(Ei+1 − Ei)

v(Ei) +D(Ei)
+ ν

∑(
J +D(Ei)

v(Ei) +D(Ei)
− 1

)
.

This expression yields

V ∼
∑ v(Ei)(Ei+1−Ei)

v(Ei)+D(Ei)
− ν

∑ J−v(Ei)
v(Ei)+D(Ei)∑ Ei−Ei−1

v(Ei)+D(Ei)

.

Its numerator contains a term multiplied by ν which is bounded (J = v(Ei) outside the
wavefront) and vanishes in the continuum limit. Approximating Riemann sums by integrals
in the remaining formula, the result is

V (E+, E−) =
∫ E+

E−
v(E)

v(E)+D(E) dE∫ E+

E−
dE

v(E)+D(E)

, (4.15)

or, equivalently, the following weighted equal-area rule:∫ E+

E−

v(E)− V (E+, E−)
v(E) +D(E)

dE = 0. (4.16)

ForD = 0, this formula reduces to that derived for the discrete drift model in [9]. This formula
can be corrected by using the trapezoid rule to evaluate integrals; see [27]. There is only one
value of J , J ∗, such that V = J with E− = E(1)(J ) and E+ = E(3)(J ). For J ∈ (vm, J ∗), a
wavefront joining E(1)(J ) to E(3)(J ) consists of a shock wave having E+ = E(3)(J ), and E−
such that V (E(3)(J ), E−) = v(E−). Furthermore, to the left of the shock wave, there is a tail
region moving rigidly with the shock wave and such that

[v(E)− V ]
∂E

∂ξ
= J − v(E), (4.17)

for negative ξ = x − V t , and E(−∞) = E(1)(J ), E(0) = E−. This whole structure (shock
wave and tail region) is called a monopole with left tail [10]. Similarly, for J ∈ (J ∗, 1), a
wavefront joining E(1)(J ) to E(3)(J ) becomes a monopole with right tail. This monopole
consists of a shock wave having E− = E(1)(J ), and E+ such that V (E+, E

(1)(J )) = v(E+),
and a tail region satisfying (4.17) for positive ξ , with the boundary conditions E(0) = E+ and
E(∞) = E(3)(J ) [10]. In conclusion, the wavefront velocity as a function of J is determined
by the following equations:

C(J ) = V (E(3)(J ), E−), with
v(E−) = V (E(3)(J ), E−), if vm < J < J ∗,

(4.18)

C(J ) = V (E+, E
(1)(J )), with

v(E+) = V (E+, E
(1)(J )), if J ∗ < J < 1.

(4.19)

We have compared the continuum approximation of the wavefront velocity (in wells traversed
per unit time, i.e., c(J, ν) = C(J )/ν, not rescaled) with the numerical solution of the model
for ν = 0.01 in figure 13. The equal-area-rule result corresponds to (4.15), (4.18), and (4.19)
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Figure 13. Comparison of the equal-area-rule (leading order) and corrected-equal-area-rule
(including first-order corrections) approximations to the wavefront velocity with the numerical
solution of the model for ν = 0.01 (reprinted from [27]).

and its maximum difference from the numerical solution is about 17.6%. This result can be
significantly improved if the integrals in (4.15) are approximated by the trapezoidal rule. Then
the corrected equal-area result differs by at most 3% from the numerical solution [27].

4.1.4. Role of diffusivity. Discrete diffusivity or, more generally, back-tunnelling as in the
term proportional toni+1 in the tunnelling current of equation (A.8), is responsible for upstream-
moving monopoles existing [24]. Thus for field values corresponding to the second and higher
plateaus in the I–V diagram, monopoles can only move downstream, because the diffusivity
vanishes at high fields. For large doping, the active well E0(t) takes on a large-field value if
J is close to the low value J1, and it takes on a low-field value if J is close to the large value
J2. We could ignore diffusivity in certain expressions in our active well theory corresponding
to the first case (monopoles moving downstream with c > 0), and still obtain reasonable
numerical approximations for large enough doping values. If the dimensionless doping ν is
small enough, monopoles can only move downstream with c > 0. In this case, the active
well theory yields worse approximations and we can use the continuum limit theory in which
diffusivity plays a minor role (it corrects the expression for monopole velocity).

4.2. Stationary states on a finite superlattice

Once different stable monopole solutions (moving either downstream or upstream, or
stationary) have been identified, we raise the natural question of whether they are compatible
with the boundary conditions. Numerical simulations at constant current show that the emitter
boundary condition results in the creation of a charge accumulation (or depletion) layer near
this contact. A charge depletion layer is formed near the collector contact as a result of the
corresponding boundary condition. Except for these layers, the existence and configuration of
monopoles moving downstream or upstream, or remaining stationary, agree with simulations
corresponding to an infinitely long current-biased SL with a monopole-like initial condition.
Thus stationary states on a finite SL are basically the stationary monopoles of the infinite
SL but with their domain wall centred in one of the existing finitely many SL wells. When
their corresponding I–V diagram is produced, we obtain a characteristic curve similar to
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that of figure 1(a) but with more regular looking branches: irregularity is due to doping
fluctuations [71,72,82]. In this curve, the electric field profile of the nth branch (counted from
left to right) has its domain wall located at the N − n SL period (counted from the emitter).

For a finite voltage-biased SL, stationary solutions of the DDD model have to be found
numerically. If we bias the SL on the second plateau of the I–V characteristic or above,
D ≡ 0 and we can use the discrete drift model. Then stationary states can be obtained almost
analytically [8, 9, 81]. The idea is that (4.1) becomes Ei−1 = Ei + [1 − J/v(Ei)]/ν, which
corresponds simply to a one-dimensional discrete mapping. We need to solve this equation
for Ei , i = 1, . . . , N , with a boundary condition for E0. Then the bias condition (3.13) can
be used to determine J . The boundary condition E1 − E0 = νc, with positive c (physical
meaning: there is an excess of electrons in the first SL well due to the emitter which results
in a charge accumulation layer near it), has been widely used [9, 55, 81]. The 1D discrete
mapping can be solved graphically together with the boundary condition for a fixed value of
the current J . Then the average field0(J ) = ∑N

i=1 Ei/N can be calculated and we can solve
the equation0(J ) = φ graphically. This procedure has been carried out in [81]. Although it is
rather immediate, no one has repeated these calculations with the theoretically better grounded
boundary condition given by equation (3.14).

5. Relocation of electric field domains

In 1998, Luo et al [49] published experimental data on how a domain wall (belonging to a
stable stationary electric field profile with two domains) relocates if the voltage across the SL is
suddenly changed. These experiments have been explained recently by numerically simulating
a discrete model with the tunnelling current given by equation (A.8) in appendix A [3]. New
experiments have further confirmed the theory [65]. Let us now report in some detail the
numerical simulations of [3] giving them a somewhat more elaborate theoretical interpretation.
For the sake of simplicity, the contact functions in equations (3.8) and (3.9) will be selected as
ej
(f )
e = σF0, w(b) = 0, and ew(f ) = σFNl/N

w
D . Then

eJ0→1 = σF0,

eJN→N+1 = σFN
nN

Nw
D

.
(5.1)

The contact conductivity σ is selected such that charge dipole waves may propagate, which also
occurs with (3.8) depending on the contact doping [12]. The factornN/Nw

D in the expression for
JN→N+1 avoids negative electron densities at the collector. We simulate numerically a 40-well
SL with barrier width d = 4.0 nm, well width w = 9.0 nm, doping Nw

D = 1.5 × 1011 cm−2,
γCi = 8 meV (independent of the miniband index µ), and cross section A = 15 000 µm2, at
a temperature T = 5 K. The parameters are those of the SL in [49]. Reasonable agreement
with the overall shape of the experimental I–V characteristics in [49] is found if we adopt
σ = 0.01 (3 m)−1.

For the homogeneous case, i.e. ni = ni+1, the current density (A.8) depends on the electric
field as in the typical N-shaped curve. The corresponding stationary I–V characteristic for
inhomogeneous solutions is the typical sawtooth pattern of figure 14 with upper and lower
branches corresponding to the up-sweep and down-sweep of the external voltage, respectively.

We show here the SL response to voltage switching starting from a point on the upper
branch of the first plateau of the I–V characteristic atVdc = 0.75 V (figure 14). After switching
to a final voltage Vf = Vdc + Vstep, the current will evolve towards a value on the stationary
I–V characteristic corresponding to one of the branches at voltage Vf (in general there are
several such branches due to multistability). We find that the final stationary current is on the
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Figure 14. The simulated sawtooth I–V characteristic of a 40-well SL (4.0 nm AlAs barriers,
9.0 nm GaAs wells). Upper branches correspond to voltage up-sweep, lower branches to down-
sweep. The arrows in (a) indicate the starting and end points of the voltage steps discussed in the
text. (b) gives an enlarged view of the initial operating point (box) as well as of the different final
points (circles) considered (reprinted from [3]).

upper branch if Vstep = 0.1 V, while it is on the lower branch if Vstep = 0.18 V; see the arrows
in figure 14(a). Thus fast switching allows us to reach the lower branch by just increasing the
voltage sufficiently. This is a striking result: in the conventional up-sweep and down-sweep,
the point on the lower branch at 0.93 V can only be reached by increasing the voltage to more
than 1.1 V and then decreasing to 0.93 V.

In figure 15(a), we depict the current response to different positive values of Vstep versus
time. For

Vstep < Vcrit, (5.2)

with Vcrit ≈ 0.175 V, the current relaxes monotonically to its final value. There is a
fundamentally different current response if equation (5.2) does not hold. Instead of relaxing
monotonically, the current first drops to a level well below the lower stationary branch. Then the
current response exhibits a fast repetitive double-peak pattern up to about 3 µs. Subsequently,
following one larger spike, only single peaks occur. The spiky structure ends about 7 µs after
the voltage switch, and the current evolves to a stationary value on the lower branch. The total
number of peaks is roughly equal to the number of wells in the SL. The frequency of the peak
burst is about 15 MHz. This behaviour does not change significantly as long as equation (5.2)
is violated, even for very different values ofVstep. This effect is very similar to the experimental
observations in [49]. The quantitative difference is that the experimental total relaxation time
is only about 2 µs. Such values could be achieved numerically, by choosing a larger scattering
width γCi ≈ 20 meV.

How do we explain this behaviour? Let us use dimensionless units as follows. Consider
the tunnelling current density of equation (A.8), eJi→i+1 = eJ (ni, ni+1, Fi; T ) evaluated
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Figure 15. Current response versus time for various (a) positive and (b) negative voltage steps at
t = 0. For t < 0, the voltage is Vi = 0.75 V. The curves are shifted vertically in units of 20 µA
in (a) and 30 µA in (b) for clarity (reprinted from [3]).

at ni = ni+1 = Nw
D for a fixed Fi = F and T . This curve is N-shaped, similar to the

drift velocity v(F ). It has a local maximum at F = FM and eJM , and we can define
vM = JMl/N

w
D . Let us define dimensionless units as in section 3 with these values, so that we

have v(E) = J (Nw
D,N

w
D, FME; T )l/(Nw

DvM). Furthermore, let us define E(1)(J ), E(2)(J ),
andE(3)(J ) to be the solutions of v(E) = J , ordered from smaller-field to higher-field values.

As in section 4, there are accumulation wavefronts joining E(1)(J ) to E(3)(J ) that have
monotonically increasing field profiles with Ei < Ei+1; they move with velocities c+(J ),
which may be positive, zero, or negative; compare with figure 8. Furthermore, there are
depletion wavefronts joining E(3)(J ) to E(1)(J ) that have monotonically decreasing wave
profiles Ei > Ei+1. These wavefronts with a decreasing field profile have not been considered
until now. They always move with positive velocities (no matter what positive value of J we
take), which we shall denote by c−(J ). The dimensionless velocities c+(J ) and c−(J ) are
calculated with the full sequential tunnelling current (A.8) instead of using the DDD model as
in section 4, and the result is depicted in figure 16. Approximations to c+(J ) can be obtained
from the active well theory for J close to J1 or J2, or even from the continuum limit ν → 0
(provided that the doping ν is not large). In the latter case, c−(J ) ≈ J (corresponding to n ≈ 0
at the leading edge of a pulse) and the possibility c+ � 0 is lost. The latter fact shows that the
continuum limit may be a poor approximation of wavefront dynamics if the current is large
enough, unless the doping is sufficiently low.

As explained before, electron accumulation monopoles may have positive, zero, or
negative velocities, as the current is increased. The current interval (Il, Iu), corresponding
to stationary monopoles, depends on the location and size of the peak and bottom values of
the sequential tunnelling current equation (A.8). For the DDD model, Il = eNw

DvMJ1/l,
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Figure 16. Front velocity versus current for electron depletion and accumulation fronts (reprinted
from [3]).
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Figure 17. Evolution of electron densities in the quantum wells during the switching process for
various voltage steps. White indicates high electron density (accumulation front), black indicates
low electron density (depletion front). In the grey area the electron density is ≈ND . Well No 1 is
located at the emitter, well No N = 40 at the collector. At t = 0 a voltage step Vstep is applied,
starting from Vi = 0.75 (reprinted from [3]).

Iu = eNw
DvMJ2/l. For depletion waves, ni � Nw

D and Fi − Fi−1 ≈ −eNw
D/ε, we can ignore

the tunnelling current Ji→i+1 in equation (3.3), and therefore the front velocity is approximately
J/(eNw

D), i.e. a linear function of the current [11,36]. The point in figure 16 where the velocities
of accumulation and depletion fronts intersect is of special interest: this point determines the
velocity and current at which a dipole wave consisting of a leading depletion front and a trailing
accumulation front can move rigidly [11].

Let us now consider a switching process where condition (5.2) is fulfilled and Vstep > 0.
The dynamical evolution of the electron densitiesni is depicted in figure 17(a) forVstep = 0.1 V.
We observe that the charge monopole region of high electron density (light region) is shifted
upstream (against the field eF ) towards the emitter. This shifting occurs on a timescale of
0.1 µs, explaining the fast monotonic relaxation if equation (5.2) is fulfilled. The switching
to a higher external voltage has the effect that all fields in the superlattice are increased and
the current instantaneously rises above Iu. According to figure 16 this gives rise to a negative
velocity of the accumulation front.
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If condition (5.2) is violated, the switching scenario is more complicated. For Vstep =
0.18 V andVstep = 0.50 V the evolution of the electron-density profile is depicted in figure 17(b)
and (c), respectively. Before switching Vstep, there is a charge accumulation front inside
the sample corresponding to the domain wall separating two coexisting stationary high-field
domains. After switching the voltage, the charge dynamics in the superlattice exhibits three
different phases:

(i) upstream shift of the accumulation front and generation of new fronts at the emitter;
(ii) coexistence of three fronts in downstream motion; and

(iii) downstream motion of two fronts. These three phases will now be considered in detail.

Phase (i). Shortly after switching the voltage step, the original pre-existing electron
accumulation layer moves upstream towards the emitter. Simultaneously, a charge dipole
wave appears at the emitter. Its leading depletion front moves towards the collector while its
amplitude increases. The trailing electron accumulation front of the dipole is pinned at the
first SL well.

The mechanism for the generation of a dipole at the emitter is as follows: in a stationary
situation, the current through the emitter barrier is equal to the current through the first
SL barrier. The field at the emitter can be calculated from equation (5.1). We assume
a contact conductivity σ such that the dimensionless boundary current at the emitter, E/ρ
(where ρ = evMN

w
D/(σFMl) is the dimensionless contact resistivity), and the homogeneous,

dimensionless current–field characteristic, v(E), intersect on the second branch of the latter,
at a critical value Jc. (We then have to choose the slope of the emitter current to be lower than
the slope of the homogeneous low-field current–field characteristic.) If 0 < J < Jc, the field
at the emitter barrier is larger than that at the first barrier, E0 > E1. Then the Poisson equation
predicts electron depletion, n1 < 1. If we could suddenly change the current to a value larger
than Jc, the field E1 would increase according to equation (3.3), trying to attain a value on
the third branch of the characteristic curve. This would produce an electron accumulation
layer at this well followed by the depletion layer which was there before changing J . The net
outcome of this mechanism would be the creation of a dipole. As seen in figure 16, a depletion
layer separated from the contacts has to move towards the collector, at a speed c−(J ) roughly
proportional to J . As the depletion wavefront moves, it leaves a high-field region behind that
extends all the way to the injecting region. The width of this region increases as its leading edge
(the depletion wavefront) advances. The extra area gained by this region has to be compensated
by lowering the current (for both the low-field and the high-field domain occur in a region of
positive differential conductivity), so as to keep the total voltage constant. Once the current
has become smaller than Jc, the field in the immediate neighbourhood of the injecting region
should correspond to another depletion layer, which means that an accumulation wavefront
forming the back of the pulse has been created meanwhile. Now the dipole is fully detached
from the injecting region and a new phase starts.

Phase (ii). After about 0.2µs, the current has dropped below Il , which, from figure 16, means
that all fronts have positive velocities. In dimensionless units, for an instantaneous value of
the current density J , accumulation fronts move with velocity c+(J ) whereas depletion fronts
move with velocity c−(J ). Let us ignore the fast timescale responsible for the current spikes in
figure 15(a) and try to find an equation for the envelope of the current–time trace. Then we can
consider that the field profile adjusts adiabatically to the instantaneous value of the envelope
of the current–time trace, J (t), which evolves slowly. The electric field profile consists of an
advancing dipole wave with field E(3)(J ) (enclosed by an accumulation wavefront centred at
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i = m
(1)
+ (t) and a depletion wavefront centred at i = m

(1)
− (t)), and an accumulation wavefront at

i = m
(2)
+ (t) that encroaches on a high-field region withE = E(3)(J ) near the collector contact.

We can mark the centre of a wavefront at a time t as the well at which there is a local maximum
(or minimum in the case of a depletion wavefront) of the charge. Then the functions m(j)

± (t)

are integer valued, because the charge inside the wavefront peaks at different wells as time
changes. Consider the lifetime of a given wavefront and denote by t1, t2, . . . the times at which
m
(j)
± (t) changes. We may define a local velocity by ci± = [m(j)

± (ti+1)−m(j)
± (ti)]/(ti+1 − ti). Let

us assume that we average these ci± over a time interval that is short compared to the timescale
typical of wavefront motion, but sufficiently long compared to the mean value of (ti+1 − ti),
for the wavefront to have advanced over many wells. Furthermore, as the envelope of the
current–time trace varies slowly, the average of the ci± can be approximated by c±(J ), where
J is the instantaneous value of the envelope of the current–time trace. The average wavefront
velocities are 〈

dm(j)
+

dt

〉
= c+(J ),

〈
dm(j)

−
dt

〉
= c−(J ), j = 1, 2. (5.3)

We can now calculate easily the dimensionless voltage φ corresponding to the field profile
considered above (one advancing pulse and one accumulation wavefront at the end of the SL).
Ignoring transition regions, we obtain

φ = 1

N

N∑
j=1

Ei = E(1)(J ) + [E(3)(J )− E(1)(J )]

(
N −m

(2)
+

N
+
m
(1)
− −m

(1)
+

N

)
. (5.4)

We now differentiate this equation with respect to t , use dφ/dt = 0, average over short time
intervals as indicated above, and use equation (5.3). Then we obtain the following equation
for J (the envelope of the current–time trace):

dJ

dt
= 2c+(J )− c−(J )

N

[E(3)(J )− E(1)(J )]2

E(3)(J )−φ
v′(E(1)(J )) + φ−E(1)(J )

v′(E(3)(J ))

. (5.5)

Notice that if we had started from a field profile comprisingn+ moving accumulation wavefronts
and n− depletion wavefronts, the same arguments would lead to the more general equation

dJ

dt
= n+c+(J )− n−c−(J )

N

[E(3)(J )− E(1)(J )]2

E(3)(J )−φ
v′(E(1)(J )) + φ−E(1)(J )

v′(E(3)(J ))

. (5.6)

J evolves on the timescale t/N , which is slow provided N is large. Clearly, J given by
equation (5.5) changes until it reaches a value J † such that 2c+(J ) = c−(J ). This means that
the original accumulation layer and the trailing accumulation front start advancing towards
the collector with the same velocity c+(J

†), while the positively charged leading front of the
dipole moves towards the collector at a higher velocity c−(J †). Numerical simulations of
different discrete models [3, 67, 68] show that each time an accumulation layer advances by
a SL period, a spike of the current appears. An asymptotic theory explaining this fact is still
lacking. If we accept it at face value, the double-peak structure observed in the numerical
simulation of figure 15(a) means that two accumulation wavefronts exist during that part of
the period. Notice that the transient region where the current exhibits double spikes has a flat
appearance, indicating the constant mean value of the current, J †. This is further corroborated
by figures 17(b) and (c). In these figures, time traces of the positions of all wavefronts are
recorded. Velocities are the reciprocals of the slopes. Notice that the velocity of the depletion
wavefront constituting the leading edge of the dipole wave, c(J ), is larger than the velocity of
the two accumulation wavefronts that coexist during a short time interval after t = 0. When the
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accumulation wavefront closer to the receiving region exits, phase (ii) ends and a new phase,
phase (iii), starts. As observed in figures 17(b) and (c) and explained below, the slopes of the
accumulation and depletion wavefronts enclosing the high-field region become identical and
their corresponding velocity is smaller than c−(J †) during phase (ii).

Please note that the above explanation is heuristic and that a consistent asymptotic
argument should replace it in the future. Such an argument should explain the spikes in
the current–time trace and still retain equation (5.6) (conveniently reinterpreted as necessary).

Phase (iii). After the original accumulation layer has reached the collector at t0 ≈ 3 µs,
there are only one accumulation layer and one depletion layer present in the sample, giving
rise to a single-spike structure of the current response as depicted in figure 15(a). The same
reasoning as in relation to phase (ii) leads us to equation (5.6) with n+ = n− = 1. After a short
transient, the velocities of the positively and negatively charged fronts should become equal,
c+(J ) = c−(J ). This occurs at a current J = J ∗ corresponding to the crossing point of the
two front velocities, as depicted in figure 16. In comparison to that for phase (ii), the velocity
of the accumulation front has almost doubled, while the velocity of the depletion front has
decreased slightly. See figures 17(b) and (c).

After these three stages of its evolution, the accumulation front finally reaches a stable
stationary state: it becomes the domain wall separating two stationary high-field domains. Of
all such possible stationary solutions at voltage Vdc + Vstep, the one having an accumulation
layer closer to the emitter is reached. This final situation on a low-current branch of the
I–V characteristic at voltage Vf = Vdc + Vstep could also be reached by conventional down-
sweeping of the I–V characteristics. In the latter case, the electron accumulation layer also
moves towards the collector.

For Vstep < 0, the electron accumulation layer always travels towards the collector and
stops at a position corresponding to the domain wall separating low- and high-field domains
of a stationary solution. This solution is the same as that which could be reached by down-
sweeping to the final voltage; see figure 17(d). In contrast to the case for positive Vstep, the
resulting current response shows no threshold-like behaviour; see figure 15(b). Since all fields
decrease during the switching process, no dipole wave can be generated at the emitter.

6. Self-sustained oscillations of the current

Self-sustained oscillations of the current in weakly coupled SL were experimentally observed
a few years ago and interpreted on the basis of the discrete drift model [52]. Self-oscillations
are caused by recycling and motion of waves in a dc voltage-biased SL. Depending on contact
conditions, these waves may be charge accumulation layers (monopoles or wavefronts) or
electric field pulses (charge dipoles) [67]. Both types of wave are found in the DDD model
assuming that the injecting contact is described by Ohm’s law with appropriate resistivity [3],
a result common to the Gunn effect in bulk GaAs [36]. The asymptotic theory for the Gunn
effect can be used to describe analytically self-oscillations in the continuum limit [10,11,36].
This description leaves out effects due to the discrete nature of the equations, such as current
spikes [67]. In this section, we shall describe the asymptotic theory of self-oscillations, and the
effect of parameters such as doping, temperature, and photoionization on oscillation frequency
and amplitude.
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6.1. Asymptotic theory

In the continuum limit ν → 0, L ≡ Nν � 1, the equations for electric field and current
density are equation (4.14) and the voltage bias condition (3.13), which becomes

1

L

∫ L

0
E(x, t) dx = φ. (6.1)

Appropriate boundary conditions can be equations (5.1), together with Ampère’s law (3.7) at
i = 0 and at N . We can write these equations in dimensionless units by using table 1 at the
end of section 3, noticing that the dimensionless tunnelling currents are (J − ∂E/∂t). The
results are

E(0, t) = ρ

(
J − ∂E(0, t)

∂t

)
,

n(L, t)E(L, t) = ρ

(
J − ∂E(L, t)

∂t

)
,

(6.2)

where ρ = eNw
DvM/(σFMl) is the dimensionless contact resistivity. Equation (4.14) is

the hyperbolic limit of the Kroemer model for the Gunn effect in bulk n-GaAs (with zero
diffusivity). Knight and Peterson [43] had already shown in 1966 that, at constant J , this
equation may develop shock waves (our approximations to the wavefronts). The difference
from the model for the Gunn effect is that the shock velocities are given by (4.15), (4.18),
and (4.19) in section 4 instead of the usual equal-area rule for the Gunn effect [43]. Except
for this difference and the peculiarities introduced by our boundary conditions, we can use
the asymptotic theory of the Gunn effect to understand current self-oscillations in a SL. In an
incomplete form, this theory was introduced in [36] (for ohmic boundary conditions) and later
elaborated (for different boundary conditions) in [11].

The key to understanding self-oscillations is to realize that the (monopole or dipole) waves
are small compared to the dimensionless SL length (L = Nν = NeNw

D/(εFM) � 1) in the
limit we consider. Outside the wavefronts, we can therefore rescale time and length as s = t/L

and y = x/L, so (4.14) and (6.1) become

J − v(E) = 1

L

[
∂E

∂s
+ v(E)

∂E

∂y

]
, (6.3)

∫ 1

0
E(y, s) dy = φ, (6.4)

where 1/L � 1 is a small parameter. Notice that, according to table 1 in section 3, the unit
of time is l/(vMν). Then the dimensionless time t is νvMtd/ l where td is time measured in
seconds (for instance). The ‘slow’ dimensionless time s is obtained by dividing t by L = Nν,
so it is s = vMtd/(Nl). Nl/vM is the order of magnitude of the time that an electron would
need to traverse the SL, while l/(vMν) gives the order of magnitude of the time that an electron
would take to traverse one SL period. The ratio of these two times is L = Nν � 1. Similarly,
the ‘slow’ spatial variable y = x/L = i/N , where i is the index of the SL period that we are
considering (i.e., the discrete variable in section 3).

As L � 1, equation (6.4) yields v(E) = J outside the wavefronts, i.e., the field is either
E(1)(J ) or E(3)(J ) there. The current density J evolves in the slow timescale, J = J (s),
so we may consider J as a constant when constructing the wavefronts. These will then be
described as explained in section 4. We shall now describe asymptotically one time period of
the current self-oscillation starting from a given field configuration inside the SL. The initial
profile will evolve with time following the current adiabatically and our first goal will be to
find an evolution equation for J . The easiest imaginable dynamic situation for an initial field
profile is that we have only one monopole or one dipole inside the SL.
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Monopole. If a monopole joining E(1)(J ) to E(3)(J ) is at x = X+(t) (equivalently, at
y = X+/L = Y +), the bias (6.1) is given by

φ ∼ E(1)(J )Y + + E(3)(J )(1 − Y +). (6.5)

If we differentiate this equation with respect to time and use dX+/dt = dY +/ds = C(J )

together with (6.5), we obtain

dJ

ds
= [E(3)(J )− E(1)(J )]2

E(3)(J )−φ
v′(E(1)(J )) + φ−E(1)(J )

v′(E(3)(J ))

C(J ). (6.6)

Since C(J ) > 0, the current increases as the monopole moves. Notice that equation (6.6) is a
particular case of equation (5.6) with n+ = 1, n− = 0, c+ = C(J )/ν, and s = t/L.

Dipole. A dipole consists of a region where the field isE(3)(J ), moving towards the anode. Its
trailing edge is a monopole at x = X+(t) (equivalently, at y = X+/L = Y +), joiningE(1)(J ) to
E(3)(J ). The dipole leading front is a region depleted of electrons: E = −x +

∫
J dt , and

located at y = Y−. Its velocity is clearly dY−/ds = J . The bias (6.1) is now

φ ∼ E(1)(J ) + [E(3)(J )− E(1)(J )](Y− − Y +). (6.7)

If we differentiate this equation with respect to time and use dY +/ds = C(J ) and dY−/ds = J

together with (6.5), we obtain

dJ

ds
= [E(3)(J )− E(1)(J )]2

E(3)(J )−φ
v′(E(1)(J )) + φ−E(1)(J )

v′(E(3)(J ))

[C(J )− J ], (6.8)

which is a particular case of equation (5.6) with n+ = n− = 1, c+ = C(J )/ν, c− = J/ν,
and s = t/L. Now the current evolves towards J = J ∗ such that C(J ∗) = J ∗. We observe
that the dipole moves at constant current with velocity given by the equal-area rule (4.16),
V (E(1), E(3)) = J . After Y− = 1, there is only one monopole in the SL and we are back at
equation (6.6). Again, the current increases as the monopole moves.

Instability at the injecting contact. Near the injecting contact at y = 0, we have a boundary
layer where the field profile adiabatically follows J (s) according to

∂E

∂x
∼ J

v(E)
− 1, E(0, s) = ρJ. (6.9)

Notice that we have ignored ∂E/∂t = L−1 ∂E/∂s � 1. Typically, the contact resistivity is
chosen such that: either (i) 0 < ρ < 1 and the straight line j = E/ρ does not intersect the
curve j = v(E); or (ii) ρ > 1 and j = E/ρ intersects j = v(E) at (Ec, Jc)with 1 < Ec < Em
(on the second branch of v(E)).

As x departs from the cathode,E(x, s) has to reach the constant solution of J −v(E) = 0
which is found to the left of the accumulation layer moving towards the anode (either a
monopole or the back of a dipole, depending on the value of the contact resistivity). If
vm < J < Jc, the appropriate field value to the left of the accumulation layer is E(1)(J ).
Thus E(x, s) either increases monotonically from ρJ to E(1)(J ) in case (i), or it decreases
monotonically from ρJ to E(1)(J ) in case (ii). Assume that we just have one monopole left
in the SL (in case (ii) this means that the leading front of the dipole has already reached the
SL end). Then J (s) increases according to (6.7) until it surpasses J = 1 in case (i) or J = Jc
in case (ii). In the first case, E(x, s) keeps the same shape, only now the field at the left of the
monopole and outside the cathode layer would try to leave E = 1 and tend towards E(3)(J ),
J ≈ 1. This situation is unstable, a new monopole is created at the cathode, and J decreases
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Figure 18. (a) Time evolution of the electric field profile on the SL obtained using the velocity
curve shown in the inset. (b) Charge-density profiles, n− 1 = ∂E(x, t)/∂x, showing the location
of the wavefront for different times. The total current density versus time is shown in the leftmost
inset, in which we have marked the times corresponding to the profiles depicted in part (a). The
rightmost inset shows clearly a monopole with a right tail (reprinted from [10]).

below 1 [10,36]. For a very short time, the newly created monopole joins E(1)(J ) to E(2)(J ),
while the old one joins E(2)(J ) to E(3)(J ). Then the old monopole disappears rapidly. It
is important to notice that the charge inside the new monopole is not appreciable until it has
departed sufficiently far from the cathode region. See figure 18 and details of asymptotic
calculations in [10]. Notice that, in the last reference, the boundary condition at the cathode
x = 0 is ∂E/∂x = c and that part of the calculation has to be slightly modified if the boundary
condition (6.2) is used instead.

In case (ii), E(1)(J ) still exists at J = Jc < 1. As J surpasses Jc, the solution for the
contact equation (6.9) would tend to increase towards E(3)(J ) as x increases, but far from
the cathode the field is still E(1)(J ). As explained in the previous section, this is an unstable
situation that gives rise to dipole creation at the cathode [11, 36]. The details of the fast wave
nucleation at the cathode can be found in [11] (again a slight modification in the calculations
is needed if we use the boundary condition (6.2) instead of the one used in the cited reference).
After a new wave is created, J decreases. Then inside the SL there are either two monopoles
in case (i) or one monopole and a dipole in case (ii). In the latter case and provided that φ is
sufficiently large, we obtain equation (5.5) with s = t/L, c+ = C(J )/ν, and c− = J/ν. Then
J tends to J = J † such that 2C(J ) = J . Provided J † < Jc, J stays at the value J † until the
old monopole exits from the sample and we are back at the initial situation. The description
of one period of the self-oscillation in case (i) is somewhat more complicated during the stage
where two monopoles coexist [10]. In any case one of the monopoles is eventually destroyed
and we have completed one period of the oscillation. If J > J † in case (ii), it is theoretically
possible to create several dipoles and to produce a chaotic current signal [19]. This seems to
have been observed numerically by Amann et al [4], who used the discrete model with a general
constitutive relation for the tunnelling current as in appendix A. Whether this possibility can
be realized in an experimental situation remains to be seen.
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It is important to highlight the far-reaching difference between the monopole- and dipole-
mediated self-oscillations that we have mentioned before: dipoles are created fast and
therefore contain noticeable charge accumulation and depletion layers that travel through
(almost) the whole SL. On the other hand, monopoles are also created at the injecting
contact, but the charge accumulation in them becomes noticeable only after a certain build-up
time. This means that monopoles apparently traverse part of the SL during an oscillation
period whereas dipoles traverse the whole SL. Obviously this difference has important
consequences that may be experimentally testable: monopole-mediated oscillations have
higher frequencies. Furthermore, numerical simulations of discrete models show that each
time a charge accumulation layer jumps from well to well, a current spike is produced. Then
the number of current spikes per oscillation period (seen in simulations of discrete models,
not in the continuum limit) is smaller for monopole self-oscillations than in the case of dipole-
mediated oscillations; see the numerical results in [67] and section 2.

6.2. Dependence of the oscillations on control parameters

It is important to learn how the frequency and amplitude of current self-oscillations depend
on the configuration of the SL (doping, barrier and well widths, number of SL periods) and
other parameters, such as voltage, temperature, magnetic field, photoexcitation, that can be
controlled. We have explained previously how the boundary condition at the cathode selects
whether monopole or dipole recycling and motion characterize the self-oscillation. In essence
a cathode condition that imposes a charge accumulation layer near the cathode for all values
of the current selects monopole recycling. Besides Ohm’s law with low resistivity, an excess
of electrons in the first SL period,

n1 − 1 = c > 0 �⇒ E0 = E1 − cν (6.10)

has also been widely used to select monopoles [9, 10, 15, 40].

6.2.1. Doping. Figure 19 shows a doping–voltage phase diagram for the second plateau
(thereby zero diffusivity) of a 20-well SL, assuming that the cathode condition is (6.10) with
c = 10−4 [55]. For dimensionless doping lower than the minimum of the solid line, the
SL evolves towards an almost uniform stationary state. For larger doping with ν < νTB ,
we have a almost uniform, stable stationary state outside a certain bias interval (φα, φω).
At these points, a branch of self-oscillations bifurcates stably (supercritically) starting with
zero amplitude and nonzero frequency (Hopf bifurcation). For ν > νTB , a horizontal line
intersects a number of different curves: (i) Hopf bifurcations, (ii) saddle-node bifurcations,
(iii) homoclines. Intersecting several Hopf bifurcation curves may indicate that there are
intervals of self-oscillations alternating with intervals where the stable solution is a stationary
state. The stationary state is a pinned wavefront (or monopole) separating two electric field
domains at which Ei is either E(1)(J ) or E(3)(J ). The wavefront is pinned at a well M
such that φ ≈ E(1)(J )(M/N) + E(3)(J )(1 − M/N). There may be at most N intervals of
stationary wavefronts. Between two such intervals, there may be a bias interval of stable
self-oscillations in which monopole recycling and motion occurs about theMth well. In some
of the interior regions observed for such doping values, there may be coexisting multistable
states with hysteresis cycles in their transitions from one to the next. The last interval of
self-oscillations ends at a homocline—that is, the oscillation frequency tends to zero while
the amplitude remains finite. Another interesting feature of the phase diagram is the dashed
line of Hopf bifurcations above the point marked DH. On this line, the Hopf bifurcation is
subcritical—that is, an unstable branch of self-oscillations bifurcates for φ < φα . Typically
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Figure 19. The total phase diagram of the model for N = 20 and c = 10−4. The dotted curves
are curves of stationary saddle nodes. For the sake of clarity, we have plotted only the main
line of homoclinic orbits which sprout from the Takens–Bogdanov point TB (thin solid curve; at
a Takens–Bogdanov point, lines of Hopf bifurcations, saddle-node bifurcations, and homoclinic
orbits intersect tangentially). We have not shown other homoclinic orbits: there is one curve of
homoclinic orbits for each Hopf curve (reprinted from [55]).

(This figure is in colour only in the electronic version)

this branch coalesces with a branch of stable oscillations at a smaller bias φLP . Then there is
an interval where both self-oscillations of finite amplitude and frequency and a stationary
state are stable (interval of bistability). Driving the bias adiabatically, we can obtain a
hysteresis cycle. Finally, for large enough doping, the self-oscillations disappear and we
have multistability of stationary solutions corresponding to coexistence of domains separated
by a pinned wavefront.

The previous phase diagram may change substantially if we change the number of SL
periods or c. For example, the branch of self-oscillations may disappear in the high-bias
region either at a Hopf bifurcation (finite frequency) or at a homoclinic orbit (zero frequency),
depending on the values of these parameters. The frequency may decrease or increase with
increasing bias. The first situation was observed in [40], and the second in [85].

6.2.2. Temperature. Temperature changes both the Fermi functions and the scattering
amplitudes in the expressions for the tunnelling currents. As a consequence, drift velocity
and diffusion coefficients in the DDD model can be substantially changed, which in turn can
drastically affect self-oscillations.

Figure 20 depicts the field-dependent drift velocity at different temperatures for SL
parameter values of [84]: 40 periods of 14 nm GaAs and 4 nm AlAs and well doping
Nw
D = 2 × 1011 cm−2. It has been calculated from the microscopic tunnelling current density

by the procedure explained in [12]. The only adjustable parameter in the sequential tunnelling
formulae is the Lorentzian half-width of the scattering amplitudes, γ . To estimate them, we
have assumed that the voltage difference,=V , between the peaks of two consecutive branches
on the second plateau of the static I–V characteristic is

=V ≈ EC3 − EC2 − 2ηγ. (6.11)
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Figure 20. Drift velocity versus electric field for different temperatures (starting at 0 K up to 175 K
in 25 K steps) for a 40-well 14 nm GaAs/4 nm AlAs SL. The well doping is Nw

D = 2 × 1011 cm−2

(reprinted from [69]).

Here ECi is the ith energy level of a given well. For γ = 0, the field profile on the second
plateau corresponds to two coexisting electric field domains with fields (EC2 − EC1)/(el) and
(EC3−EC1)/(el). The domain walls corresponding to two adjacent branches in the I–V diagram
are located in adjacent wells. Then the voltage difference should be =V ≈ (EC3 − EC2)/e. In
the presence of scattering, resonant peaks have finite widths which we take as 2ηγ , thereby
obtaining (6.11). 2η is an adjustable parameter of the order of unity [29]. By using this formula
and the measured current in [84] (figures 1–3), we find γ = 18 meV at 1.6 K and γ = 23 meV
at 140 K for η ≈ 0.6. Linear interpolation yields the temperature dependence of γ in the range
that we are interested in.

Notice that the first peak of the velocity in figure 20 (see the shoulder feature at about
106 V m−1 for temperatures below 50 K) rapidly disappears as the temperature increases for
this particular sample. This result might change if we assume different scattering amplitudes
for each of the first two subbands of the wells. Moreover, the different extrema of the velocity
curve shift to lower field values as the temperature increases. Thus formation of electric field
domains and current self-oscillations are expected for voltages on the second plateau and higher.
Multistable solution branches of the I–V characteristic curve should also shift to lower voltages
and higher currents as the temperature increases, as observed in experiments [46]. These effects
could not be obtained from the fitted drift velocity in [46]. As the diffusion coefficient decreases
very rapidly with field, we can safely set D ≡ 0 in our DDD model for the experimentally
observed voltage range. The relevant model is thus the well-known discrete drift model of [9]
with the drift velocity of figure 20 and the boundary condition (6.10). Results of numerical
calculations are shown in figure 21. We observe that the I–V curve presents intervals in which
the average current increases with voltage, followed by intervals in which the average current
decreases. At lower temperatures the intervals of increasing current are wider whereas the
opposite occurs at higher temperatures. Correspondingly, the frequency of the self-oscillations
in such an interval starts increasing but it drops to a smaller value than the initial one at the
upper limit of the interval. The amplitude of the self-oscillations (not shown here) vanishes
at the upper and lower limits of each voltage interval. This suggests that the branches of self-
oscillations begin and end at supercritical Hopf bifurcations. As the temperature increases, the
region of negative differential conductivity in figure 20 becomes smoother and the frequency of
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Figure 21. (a) I–V characteristics for different temperatures, showing stationary (dynamic) states
with full (empty) circles. The boundary condition parameter c = 10−3 has been used in the
numerical simulations. The curve corresponding to 150 K has been shifted by −0.04 mA for
clarity. Lines are plotted only for eye-guiding purposes. (b) Current oscillation frequency versus
voltage for some dynamic dc bands of the curves shown in (a) (reprinted from [69]).

the self-oscillations increases; see figure 21(b). At low temperatures, the electric field profiles
consist of basically two stationary domains joined by a domain wall. The I–V characteristic
curve has multiple branches corresponding to stationary domains with the domain wall located
at different wells. This situation resembles that obtained as voltage and doping are varied,
provided doping and inverse temperature are assimilated. Notice in figure 21 that there are
voltage intervals where the oscillation frequency increases with voltage, while the average
current decreases with voltage. This behaviour was called anomalous by Wang et al [85] but
it can be directly explained by the discrete drift model equations; see [69].

6.2.3. Effect of other parameters on self-oscillations. The effect of other parameters
such as photoexcitation or an external magnetic field on electric field domains [50] or self-
oscillations [51,78,79] has been explored both experimentally and theoretically, although not
to the same extent as in the cases of doping and temperature.
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The influence on self-oscillations of a magnetic field B transverse to the SL growth
direction has been studied experimentally and theoretically by Sun et al [78, 79]. They found
that increasing the magnetic field was qualitatively similar to increasing the temperature in a
doped SL that presented a multistable field domain configuration. Their SL presented such
a configuration at B = 0 T. Increasing B both shifted the plateaus to larger voltages and
diminished the length of the branches in the I–V characteristic curve and the peak current.
Above a critical field, the I–V curve became flat and self-oscillations started. If a higher
criticalB was surpassed, the self-oscillations disappeared and so did the corresponding plateau.
These observations were explained by simulations of the discrete drift model with parameters
corresponding to the second plateau of the SL [79]. For the drift velocity, Sun et al used
the Kazarinov–Suris expression [41] in which the Lorentzian width increased with B and its
centre, eF l, changed to eF l−e2l2B2/(2m∗). It would be interesting to compare experimental
results with those for similar simulations using the drift velocity (A.12).

Photoexcitation acts on self-oscillations qualitatively similarly to doping [8, 52, 58, 59].
Discrete models are somewhat more complicated. We have to consider the two-dimensional
hole density in the Poisson equation and add a rate equation for it [8, 34]. Phase diagrams of
photoexcitation versus voltage and frequency dependence of the self-oscillations have been
studied experimentally [59], but more theoretical work is needed to explain them [62].

7. Final remarks

We have reviewed nonlinear charge transport in weakly coupled semiconductor SL. Key
experimental results indicate that the governing equations are spatially discrete, and
demonstrate that the formation and dynamics of electric field domains are responsible for many
interesting phenomena such as multistability and hysteresis between stationary configurations
and self-oscillations of the current. In this article, we have discussed the basic theory of
stationary states and wavefronts in simple discrete DDDs for charge transport in a SL. The
core of this theory is consideration of wavefronts in an infinitely long SL under constant current
bias. Depending on doping and the value of the current, wavefronts joining two stable constant
field values may be stationary or move upstream or downstream with the flow of electrons. It
turns out that the smooth profile of a moving wavefront becomes discontinuous and gives rise
to a stationary wavefront as the current approaches certain (doping-dependent) critical values.
Explicit formulae for the wavefront velocity can be obtained in two limits: the strongly discrete
(large doping) and the continuum limit (small doping).

Finite SL under voltage bias may exhibit the above-mentioned multistability of stationary
field configurations or self-sustained current oscillations. The results for infinitely long SL
can be used to understand these different situations provided the SL is long enough. So far,
asymptotic calculations have been performed in the continuum limit and used to understand
numerical solutions of the discrete models. Depending on the boundary condition at the
injecting contact, self-oscillations may be due to the recycling and motion of either charge
monopole or dipole waves [12,36,67,83]. The influence of control parameters such as doping,
temperature, external magnetic fields, and laser photoexcitation can be theoretically studied
by means of discrete models, although relatively complete work has been carried out only in
the case of doping [55]. Let us comment now on different research avenues in which further
work seems worthwhile:

(1) relocation of electric field domains and charge fluctuations;
(2) SL with disorder;
(3) discrete hydrodynamics;
(4) aperiodic dynamics.
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(1) Relocation of domains and charge fluctuations. In relocation experiments, a doped SL
displaying a multistable I–V characteristic is biased (typically) on the first plateau, say in the
middle of a branch. The corresponding field configuration has two domains separated by a
domain wall which is an accumulation layer. Then the voltage is suddenly increased fromV0 to
V1 = V0 +=V and the time evolution of the current is recorded. Depending on=V , the domain
wall has to relocate in such a way that a stable field configuration appropriate to the new voltage
is reached [49]. The outcome has been studied numerically using the discrete model given by
equations (3.1) and (3.3) with a constitutive relation of the form (A.8) and ohmic boundary
conditions (5.1) [3]. For any =V < 0 as well as for small positive =V , the relocation of the
domain wall always occurs by a direct movement of the charge monopole forming the domain
boundary to its final position. This movement may be either upstream or downstream in the
electron flow as needed. However, for sufficiently large =V > 0, a charge dipole is injected
at the emitter contact in addition to the existing monopole, because the latter cannot move
upstream beyond one SL period without encountering a stable field configuration [3]. Recent
experiments by Rogozia et al [65] confirm this theoretical picture. It seems desirable to extend
the theory of active wells (strongly discrete limit) to give a better asymptotic explanation of
the numerical solution than that in section 5. Other experiments have shown that the relocation
time for up jumps (=V > 0) close to the discontinuity in the I–V characteristic is random
and have also investigated its probability distribution function [64]. The corresponding theory
will have to include shot noise terms in the governing equations and has not been analysed as
yet although there are promising results of numerical simulations [13].

(2) SL with disorder. The effect of a random distribution of doping in the SL wells has been
studied by means of numerical solutions of discrete models under voltage bias by Schöll’s
group [71,72] and compared with experimental results [80]. Their results explain the irregular
appearance of static multistable branches in the experimentally observed I–V characteristic
of figure 1(a) [80]. The effect of disorder on wavefront motion and self-oscillations is less
understood [61,71,72]. Interesting results could be obtained by means of the theory of active
wells of [27]. It can be argued that the average wavefront speed scales with current as |J−Jc|3/2
in the presence of disorder [28]. This contrasts with the classical critical exponent 1/2 of
equation (4.13). The catch is that this novel exponent could be observed in experiments under
dc current bias, not under the more usual dc voltage bias.

(3) Discrete hydrodynamics. Recently it has been argued that experimentally observed
self-oscillations in certain strongly coupled SL can be explained by using a discrete model
having different electron temperatures in different SL periods [77]. It would be interesting
to derive discrete hydrodynamic equations for electron density, momentum, and temperature
plus electric potential from a quantum kinetic formulation. Despite many advances reported
in the quantum kinetic literature for SL [83], to this day neither discrete hydrodynamics or
simpler discrete drift-diffusion equations have been derived from quantum kinetic equations.
These derivations constitute an important open problem.

(4) Periodic and aperiodic dynamics. As indicated in section 6, a number of issues concerning
self-oscillations under dc voltage bias are still not resolved despite their interest for comparison
between theory and experiments. Phase diagrams (cf figure 19) including the dependence
on the number of SL periods and boundary parameters are totally lacking; this may be
due to the computational cost of running numerical continuation algorithms, although there
is some work in progress on phase diagrams including temperature and photoexcitation.
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Under ac + dc voltage bias, driven SL may exhibit aperiodic oscillations, either quasiperiodic
or chaotic. This was predicted on the basis of numerical solution of the discrete drift model
in [15, 16]. Experimental evidence was reported in [17, 48, 51, 87]. Numerical solution of a
more detailed sequential tunnelling discrete model [1] shows that certain features of aperiodic
behaviour may be due to the high-frequency current spikes superimposed on a natural self-
oscillation as in figure 4; see [68]. In turn, this points to nontrivial effects caused by well-to-well
wavefront motion during self-oscillations. To achieve a more analytical understanding of these
effects, one should use the theory of active wells to describe wavefront motion in these more
complex circumstances. If satisfactorily developed, this theory might also clarify the origin
and mechanism of the chaotic oscillations under dc voltage bias numerically found by Amann
et al [4]. Apparently these chaotic oscillations are due to random firing of wavefronts at the
injecting contact due to a delicate choice of the contact resistivity, as explained for a bulk
semiconductor in [19]. These chaotic oscillations have been predicted to occur for a SL dc
voltage biased on the first plateau of the I–V characteristic curve. However, in experiments,
chaotic oscillations under dc voltage bias have only been observed in a SL biased on the second
plateau [87, 88].

Chaotic oscillations are also possible in strongly coupled SL under ac + dc voltage
bias [20, 21] or in regimes of negative effective mass induced by terahertz radiation [22, 23].
These predictions are based on numerical solution of continuum balance equation models.
Predictions of chaotic dynamics for mathematically similar models of nonlinear transport in
bulk n-GaAs under ac + dc voltage bias were made earlier [54, 60].
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Appendix A. Tunnelling current and approximations

In this appendix, we derive simplified constitutive relations for the tunnelling current density
across barriers in terms of the local electric field and the electron densities at adjacent wells.
They clarify the range of validity of the DDD and discrete drift models. These derivations give
leading-order asymptotic results that should be corrected if quantitatively precise formulae are
needed. The formulae that we obtain have the advantage over pure numerical computations of
being analytical and they can be used to develop the theory further. Given a known configuration
of a sample used in experiments, our formulae allow calculation of constitutive relations that
can be easily used to determine the dynamical behaviour of the SL.

We shall start by writing out the tunnelling current across the ith barrier given by the
THM [12]:

Ji→i+1 = h̄kBT

2m∗

n∑
j=1

∫ ∞

0
AC1(ε)ACj (ε + eFil)Ti (ε) ln

[ 1 + exp(µi−ε
kBT

)

1 + exp(µi+1−eFi l−ε
kBT

)

]
dε. (A.1)

Green function calculations yield the same expression except that Ti (ε) is given by a different
formula [3]. HereACj (ε) is a Lorentzian function, (γCj/π)[(ε−ECj )2 +γ 2

Cj ]
−1, centred at the
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energy of the j th subband and whose width is proportional to the reciprocal of the scattering
time. Ti (ε) is proportional to the transmission dimensionless transmission probability across
the ith barrier:

Ti (ε) = 16k2
i k

2
i+1α

2
i (k

2
i + α2

i )
−1(k2

i+1 + α2
i )

−1

(w + α−1
i−1 + α−1

i )(w + α−1
i+1 + α−1

i )e2αid
,

h̄ki =
√

2m∗ε, h̄ki+1 =
√

2m∗[ε + e(d + w)Fi],

h̄αi−1 =
√

2m∗
[
eVb + e

(
d +

w

2

)
Fi − ε

]
,

h̄αi =
√

2m∗
(
eVb − ewFi

2
− ε

)
,

h̄αi+1 =
√

2m∗
[
eVb − e

(
d +

3w

2

)
Fi − ε

]
,

(A.2)

(we have not distinguished between the electron effective masses at barriers and wells), and
µi is the chemical potential of the ith well measured from the bottom thereof. The chemical
potential is related to the electron density ni by means of

ni(µi) = m∗kBT
πh̄2

∫ ∞

0
AC1(ε) ln

[
1 + exp

(
µi − ε

kBT

)]
dε. (A.3)

We would like to obtain the tunnelling current density as a function of ni , ni+1, and Fi .
It is difficult to obtain an analytical approximate expression because there are many small
parameters entering the previous formulae. In [12], we argued that at low or high temperatures,
Ji→i+1 ≈ nif (Fi) − ni+1g(Fi), and the functions f and g could be calculated by fitting to
numerical data. Here we shall study two special limits, γ � kBT � =ε and kBT � γ � =ε,
where =ε = eFil − ECj + EC1 is representative of the energy differences appearing in the
previous expressions. Clearly, these two limits are sensible for weakly coupled SL but they
break down at low fields for tunnelling between the first subbands of adjacent wells. In common
experimental situations, γ ≈ 10 meV (that is 116 K), =ε ≈ 100 meV, and T = 4 K, so the
second limit is realized [40].

If γ � =ε and T > 0, AC1(ε) ∼ δ(ε − EC1) in (A.3), which then becomes

ni(µi) ∼ m∗kBT
πh̄2 ln

[
1 + exp

(
µi − EC1

kBT

)]
. (A.4)

This trick cannot be repeated in (A.1) for we would obtain a result proportional to δ(0).
However, we can separate the integrals as∫ ∞

0
=

∫ EC1+δ

EC1−δ
+

∫ EC1−δ

0
+

∫ ∞

EC1+δ
. (A.5)

Clearly, these integrals are negligible unless =ε is very small compared to a representative
energy scale: the subbands have to be almost in resonance for tunnelling to be significant. We
will choose δ such that γ � δ � =ε. Then we approximate all the functions in the integral
from EC1 − δ to EC1 + δ by their value at ε = εC1 except for the two Lorentzians. The relative
error involved is of order γ δ/(=ε)2 � 1. Notice that this error is small unless we want to
explore C1–C1 tunnelling at zero field, in which case =ε = 0. Now we approximate the
integral of the two Lorentzians from EC1 − δ to EC1 + δ by their integral from −∞ to ∞ and
use the exact formula∫ ∞

−∞
AC1(ε)ACj (ε + eFil) dε = (γC1 + γCj )/π

(EC1 − ECj + eFil)2 + (γC1 + γCj )2
. (A.6)
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The relative errors involved in this approximation are of order γ /δ, and so are the additional
relative errors if we also ignore all the integrals in (A.5) compared to the first one. The resulting
tunnelling current is

Ji→i+1 = h̄kBT

2m∗

n∑
j=1

γC1+γCj
π

Ti (EC1)

(EC1 − ECj + eFil)2 + (γC1 + γCj )2
ln

[ 1 + exp(µi−EC1

kBT
)

1 + exp(µi+1−eFi l−EC1

kBT
)

]
. (A.7)

We can now eliminate the chemical potentials in favour of the electron densities by means
of (A.4), with the result

Ji→i+1 =
n∑
j=1

h̄3(γC1+γCj )
2m∗2 Ti (EC1)

(EC1 − ECj + eFil)2 + (γC1 + γCj )2

×
{
ni − m∗kBT

πh̄2 ln

[
1 + exp

(
− eFil
kBT

)(
exp

(
πh̄2ni+1

m∗kBT

)
− 1

)]}
. (A.8)

This expression is of the same form as that used in [3,83]. It is not well justified for low fields
and C1–C1 tunnelling, but it yields a useful analytical formula that can be used with greater
ease than the complete integral in (A.1). Equivalently, equation (A.8) can be written as

Ji→i+1 = v(f )(Fi)

l

{
ni − m∗kBT

πh̄2 ln

[
1 + exp

(
− eFil
kBT

)(
exp

(
πh̄2ni+1

m∗kBT

)
− 1

)]}
, (A.9)

v(f ) =
n∑
j=1

h̄3l(γC1+γCj )Ti (EC1)

2m∗2

(EC1 − ECj + eFil)2 + (γC1 + γCj )2
. (A.10)

In the limit kBT � πh̄2ni+1/m
∗ ≈ πh̄2Nw

D/m
∗, we can approximate (A.8) by

Ji→i+1 = v(f )(Fi)

l
(ni − ni+1e− eFi l

kB T ). (A.11)

Notice that equation (A.11) yields the DDD model with analytic formulae for the drift velocity
and diffusion coefficient:

v(Fi) = v(f )(Fi)

(
1 − exp

(
− eFil
kBT

))
, (A.12)

D(Fi) = v(f )(Fi)l exp

(
− eFil
kBT

)
, (A.13)

where v(f )(Fi) is given by equation (A.10); see the insets in figure 5. Notice that the drift
velocity (A.12) is somewhat similar to the Lorentzian dependence given by the simpler theory
of Kazarinov and Suris [41]. Our additional prefactor in equation (A.10) yields a more
complicated field dependence in our formulae. Our drift velocity is also similar to the escape
time formula used by Rogozia and Grahn to give an estimation of the frequency of current
self-oscillations [66], provided more precise expressions for Ti (with different electron masses
at wells and barriers) are used.

In the opposite limit kBT � πh̄2ni+1/m
∗ ≈ πh̄2Nw

D/m
∗, equation (A.8) becomes

Ji→i+1 = v(f )(Fi)

l

[
ni −

(
ni+1 − m∗eFil

πh̄2

)
θ

(
ni+1 − m∗eFil

πh̄2

)]
. (A.14)

Here θ(x) is the Heaviside unit step function and we have ignored an exponentially small term
for ni+1 < m∗eFil/(πh̄2). The same formula can be obtained directly from equations (A.1)
and (A.3) in the limit kBT � γ � =ε, after some algebra.

Similar approximations can be used to obtain analytical formulae for the boundary
conditions. The tunnelling current from the emitter contact becomes
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J0→1 ≈ j (f )e (F0)− n1

l
w(b)(F0), (A.15)

j (f )e (F ) =
n∑
j=1

16α2
0k0k

2
1(k

2
0 + α2

0)
−1(k2

1 + α2
0)

−1

(w + α−1
0 + α−1

1 )e2α0d
θ

(
ECj − eF

(
l +

w

2

))

× kBT

2πh̄
ln

(
1 + exp

(
εF + eF (l + w/2)− ECj

kBT

))
, (A.16)

w(b)(F ) = 8h̄k0k
2
1α

2
0 l(k

2
0 + α2

0)
−1e−2α0d

m∗(w + α−1
0 + α−1

1 )(k2
1 + α2

0)
θ

(
EC1 − eF

(
l +

w

2

))
, (A.17)

where k1, α0, etc are given by (A.2) with i = 1 and ε = ECj . The tunnelling current to the
collector is

JN→N+1 ≈ nN

l
w(f )(FN), (A.18)

w(f )(F ) = 8h̄α2
Nk

2
NkN+1l(k

2
N + α2

N)
−1e−2αNd

m∗(k2
N+1 + α2

N)(w + α−1
N + α−1

N−1)
, (A.19)

where kN , αN , etc are given by (A.2) with i = N and ε = EC1.

Appendix B. Sequential tunnelling current and continuum limit

Often it is convenient to work with the full sequential tunnelling current given by equation (A.8)
instead of working with the DDD approximation. The theory described in this paper is based
upon studying wavefronts under current bias and it can be easily extended to the general case.
It is clear how to do this for the active well theory, and we shall study now the motion of
wavefronts in the continuum limit. First of all, let us nondimensionalize the discrete model
with the tunnelling current given by equation (A.8), as explained in section 5. The result is

dEi
dt

+ v(f )(Ei){ni − τ ln[1 + e−αEi/τ (eni+1/τ − 1)]} = J, (B.1)

where v(f )(Ei) = v(f )(FMEi)/vM is the dimensionless forward velocity, and τ =
m∗kBT /(πh̄2Nw

D) and α = eFMlm
∗/(πh̄2Nw

D) are two new dimensionless parameters. For
the first plateau of the 9/4 SL at T = 5 K, τ = 0.076 and α = 1.6. In the continuum limit,
equations (3.12) and (B.1) yield the following strongly nonlinear hyperbolic equation:

∂E

∂t
+ v(f )(E)

{
1 +

∂E

∂x
− τ ln[1 + e−αE/τ (e(1+∂E/∂x)/τ − 1)]

}
= J, (B.2)

up to O(ν) terms. This equation needs to be supplemented by a law for the velocity of shock
waves, V (E+, E−). To find it, we first observe that, inside the shock wave, (ni+1/τ) � 1, so we
may approximate the logarithmic term in equation (B.1) by its zero-temperature approximation
(ni+1 − αEi)θ(ni+1 − αEi) + τe−|ni+1−αEi |/τ . Keeping the leading order only, we obtain

V
∑ Ei − Ei−1

v(f )(Ei)
∼ −

∑ ν dEi/dt

v(f )(Ei)
∼

∑
ν

[
ni − (ni+1 − αEi)θ(ni+1 − αEi) + J

v(f )(Ei)

]

∼
∑

(Ei − Ei−1)−
∑ (Ei+1 − Ei)θ(1 − αEi)

v(f )(Ei)

+ ν
∑ v(f )(Ei)− J + (αEi − 1)θ(1 − αEi)

v(f )(Ei)
.

Equivalently,

V
∑ Ei − Ei−1

v(f )(Ei)
∼

∑ v(f )(Ei)− θ(1 − αEi)

v(f )(Ei)
(Ei+1 − Ei)

+ ν
∑ v(f )(Ei)− J + (αEi − 1)θ(1 − αEi)

v(f )(Ei)
.
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The numerator of the last term becomes zero outside the wavefront, which means that this term
is of order ν and it can be ignored in the continuum limit ν → 0. Approximating the Riemann
sums by integrals, we therefore obtain

V (E+, E−) =
∫ E+

E−
v(f )(E)−θ(1−αE)

v(f )(E)
dE∫ E+

E−
dE

v(f )(E)

. (B.3)
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